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Outline

• Recap from last week: (g – 2)/2 in quantum field theory.

• QED-EW & QED-BSM contributions to (g – 2)/2:

• on the one hand, the discrepancy is evidence for susy; yet, on the other, ...

• … the agreement provides a strong constraint on susy [Bechtle et al., arXiv:0907.2589].

• QED-QCD contributions to (g – 2)/2:

• hadronic vacuum polarization;

• hadronic “light-by-light” scattering.
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Magnetic Moments in QED (+ EW + BSM)
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• Static quantities—electric charge and magnetic moment—obtained as q → 0.

• Magnetic moment	 .

• By definition of eR, F1(0) = 1.

• So a = F2(0): as Prateek discussed, algebraically intensive methods can be automated.

Electromagnetic Vertex

= eRū(p0)


gµ F1(q2)+
isµnqn

2m
F2(q2)

�
u(p)

µ =
e~
2m

2 [F1(0)+F2(0)]
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Eighth-order QED contribution to the anomalous magnetic moment of the muon

T. Kinoshita, B.Nizic, ' and Y. Okamoto
Newman Laboratory ofNuclear Studies, Cornell University, Ithaca, New York 14853

(Received 27 September 1989)

We report a calculation of the eighth-order QED contribution to the muon anomalous magnetic
moment a„"' coming from 469 Feynman diagrams, all of which contain electron loops of vacuum-
polarization type and/or light-by-light scattering type. Our result is 126.92(41)(a/m) . The error
represents the estimated accuracy (90% confidence limit) of the required numerical integration. We
also report an estimate of the tenth-order contribution to a„. Combining these with the lower-order
results and the latest theoretical value for the electron anomaly a„we find that the QED contribu-
tion to the muon anomaly is given by a„D=1 165 846947(46)(28) X 10 ', where the first error is
an estimate of theoretical uncertainty and the second reflects the measurement uncertainty in a. In-
cluding the hadronic and electroweak contributions, the best theoretical prediction for a„available
at present is a„'""'"=116591920(191)X10 ",where the error comes predominantly from the ha-
dronic contribution.

I. INTRODUCTION AND SUMMARY

The anomalous magnetic moment of the muon a„pro-
vides one of the most stringent tests of the renormaliza-
tion program of the standard model, the unified elec-
troweak sector in particular. This is in strong contrast to
the anomalous magnetic moment of the electron a„
which is rather insensitive to strong and weak interac-
tions, and hence offers the best testing ground for the
"pure" quantum electrodynamics.
Much of the theoretical analysis is identical for elec-

trons and muons except that the effect of the electron on
a„and that of the muon on a„via vacuum polarization,
are quite asymmetric. The electron, being much less
massive than the muon, cannot readily create a virtual
muon-antimuon pair. Thus muons (and all heavier parti-
cles} have little observable effects on a, . The muon, on
the other hand, can create a virtual electron-positron pair
with relative ease. Indeed, in the fourth and higher or-
ders, diagrams containing electron loops dominate. Simi-
larly, the effects of strong and weak interactions are
much more important in a„ than in a, .
In testing the theoretical prediction for a„experimen-

tally, it is crucial to know all these contributions precise-
ly. We have therefore carried out an extensive calcula-
tion of terms contributing to a„, and managed to reduce
the theoretical error from the previous value of 10X10
to 2X10, which is of the same order of magnitude as
the weak-interaction effect on a„. A preliminary result of
this calculation was reported in Ref. 1. It has provided a
strong motivation for the new muon g —2 experiment
E821 which is in progress at the Brookhaven National
Laboratory. When this experiment and associated exper-
iments needed to improve the hadronic contribution to
a„are completed, our theoretical results will enable us to
test the prediction of the standard model at the one-loop
level. In addition, it provides useful constraints on possi-
ble muon internal structure as well as supersymmetric

where m2 and m3 are the masses of other leptons. For
the electron and the muon we have

a, = A &+ A2(m, /m„)+ A&(m, /m, )
+ A3(m, /rn„, m, /m, ),

a„= A &+ A2(m„/m, )+Az(m„/m, )

+ A3(m„/m„rn„/m, ) .

(1.2}

(1.3)

The renormalizability of QED guarantees that A „A2,
and A3 can be expanded in power series in a/~ with
finite calculable eoeScients:

+WI"l l l

'2 3

+ Q + 0 ~ ~
a ~6~ a
7T

i =1,2, 3 .

and other theories.
In this paper we present a detailed account of our cal-

culation of the eighth-order QED contribution to a„. In
addition we report an estimate of the tenth-order QED
contribution. The long delay in the publication of the
eighth-order result was caused by the unavailability, until
the last couple of years, of computing power which could
adequately handle some of the huge integrals involved.
Our evaluation of the hadronic effect on a„was reported
elsewhere.
The QED diagrams contributing to the anomalous

magnetic moment of a charged lepton (electron, muon, or
tauon) can be divided into three groups: (i}diagrams con-
taining only one kind of lepton; (ii) diagrams containing
two kinds of leptons; and (iii} diagrams containing all
three leptons. The anomaly for a lepton of mass m„be-
ing a dimensionless quantity, can be expressed in the gen-
eral form

a = At+ A2( 1/m2)+Ax( t/m3)

+ A3(m, /m2, m & /m3),
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FIG. 3. Six of the diagrams contributing to subgroup I(b}.
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FIG. 1. Typical eighth-order vertex diagrams from the four
groups contributing to a„.

scattering subdiagram with further radiative corrections
of various kinds. This group consists of 180 diagrams.
Typical diagrams are shown in Fig. 1(d).

Group I
These diagrams can be classified further into the fol-

lowing gauge-invariant subgroups.

Subgroup I(a). Diagrams obtained by inserting three
second-order vacuum-polarization loops in a second-
order vertex. Seven diagrams belong to this subgroup.
Three are shown in Fig. 2. The other four are obtained
from diagrams of Figs. 2(b) and 2(c) by permuting elec-
tron and muon loops along the photon line.
Subgroup I(b). Diagrams obtained by inserting one

second-order and one fourth-order vacuum-polarization
loops in a second-order vertex. Eighteen diagrams be-
long to this subgroup. Six are shown in Fig. 3.
Subgroup I(c). Diagrams containing two closed fer-

mion loops one within the other. There are nine dia-
grams that belong to this subgroup. Six of them are
shown in Fig. 4.
Subgroup I(d). Diagrams obtained by insertion of

sixth-order (single electron loop) vacuum-polarization

(a)

I

I

(c)
FIG. 2. Three of the diagrams contributing to subgroup I(a).

(c)

FIG. 4. Six of the diagrams contributing to subgroup I(c).

Tr γodd = 0
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subdiagrams in a second-order muon vertex. Fifteen dia-
grams belong to this subgroup. Eight are shown in Fig.
5. Each of A, C, D, E, and F and the time-reversed dia-
gram for E has a charge-conjugated counterpart.
The evaluation of contributions of subgroups I(a) and

I(b) is greatly facilitated by the analytic formulas avail-
able for the second- and fourth-order Kallen-Lehmann
spectral representations of the renormalized photon
propagator.
Following the discussion in Sec. II of Ref. 22, the con-

tribution to a„ from the diagram obtained by sequential
insertion of m kth-order electron and n 1th-order muon
vacuum-polarization loops into a second-order vertex is
given by

a= f dy(1 —y) f ds
0 0

pk(s}

mp
1+ 4 1—y m,

1 g2 y2

'm

X dr
0 4 1—y1+

1—t y

n

(2.1)

where pk is the kth-order spectral function. Explicit

FIG. 5. Eighth-order vertices obtained by insertion of sixth-
order (single electron loop) vacuum-polarization diagrams in a
second-order muon vertex.

forms of p2 and p4 are given by Eqs. (2.9) and (2.10) of
Ref. 22.
As a special case of (2.1} the contribution of the dia-

gram in Fig. 2(a) can be written as

a[Fig. 2(a)]=f dy(1 —y) f ds
0 0

p2(s)

mp
1+ 4 1 y me

1 s

'2
3

(2.2)

The contributions of the diagrams in Figs. 2(b) and 2(c) are given by similar expressions. Evaluating these integrals nu-
merically using the integration routine RtwIAD (Ref. 23) with 1.6X 10 subcubes and 12 iterations, we have found

a[Fig. 2(a)]=7.2237(13},
a[Fig. 2(b)]=0.4942(2),
a[Fig. 2(c)]=0.0280(1) .

Thus the total contribution of the diagrams of subgroup I(a) is

a' ' =7 7459(13)
The contribution of the diagrams shown in Fig. 3(a) is given by

(2.3)

(2.4)

(2.5)

(2.6)

a[Fig. 3(a)]=2f dy(1 —y) f ds
0 0

p2(s)

m
1+ 4 1 y me

1—s y

p4(&)
T

1+ 4 1—y me

1—t2 y2 m

2 (2.7)

The contributions of Figs. 3(b) and 3(c) are similar. Nu-
merical integration by RIwIAD using 1.6X 10 subcubes
and 10 iterations gives

Summing up the values (2.8)—(2.10), one finds for the sub-
group I(b) the result

a[Fig. 3(a}]=7.1289(23),
a[Fig. 3(b)]=0.1195(1),
a[Fig. 3(c)]=0.3337(1) .

(2.8)

(2.9)

(2.10)

a I(b) =7.582 1(23) . (2.11)

In order to evaluate the contribution to a„coming
from the nine Feynman diagrams of subgroup I(c), we
make use of the parametric integral representation of the
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TABLE II. Auxiliary integrals —Group I. Column 3 lists
relevant equations from Ref. 22. Note, however, that the treat-
ment of terms related to the IR subtraction has been changed
from that of Ref. 22 to that of Ref. 27. Thus, for instance,
6Bp 'p in this table corresponds to EB2 'p +AL p 'p of Ref. 22.

Term

M~/'P)

MP'"
, P2

2, r~~

EB2
gB(e,e)

2, P2
, e)
, P2

gg(eg)
2)

bM)P",P4
EB4,+26L4, +EL4„
B4b+ 2~L&, +~L4I

65m4,
5,5m4b

Value

0.015687
1.094 259 6
—0.16109(3)
0.75
0.063 399
1.886 33(8)
9.405 5 X 10
3.1357(6)
—0.5138(17)
0.542 4(6)—0.301 5(10)
2.208 1(4)

Reference

(3.6)
(3.6)
(4.14)

(4.15)
(4.7)
(4.7)
(4.7)
(4.15)
(4.15)
(4.15)
(4.15)
(4.15)

/&I I
I
I
I

~ggl

] I
'I

I
I

/

I
l

FIG. 6. (a) Fourth-order vertex diagrams with crossed pho-
ton lines. (b) Fourth-order vertex diagrams in which photon
lines do not cross.

where

Vl

4

for i =B,G,H,
for i = A, C,D,F,
for i =E,

(2.20}

and

682 =5'82+ 6'Lq = 4,
AMP' =AM/" +25M/',P4 ,p4 ~P4b

b L ' ' =b L4„+25L~, +b L4i+ 2b L4, ,
aa'4'=Sa4. +aa4b,
b,5m' )=b,5m4, +55m46 .

(2.21)

The quantities in (2.21) are defined in Ref. 22. Their
values are given in Table II. From the numerical values
listed in Tables I and II we obtain

ai(d) =—0.7945(202} . (2.22)

ais'=16. 169(21) . (2.23}

Finally, collecting the results (2.6), (2.11), (2.17), and
(2.22), we find the contribution to the muon anomaly
from the 49 diagrams of group I to be

many properties and the corresponding Feynman in-
tegrals can be combined into a single compact integral
with the help of the Ward-Takahashi identity, simplifying
the computation substantially.
Use of the analytic expressions for the second- and

fourth-order spectral functions for the photon propaga-
tor, the Ward-Takahashi identity, and time-reversal sym-
metry cuts down the number of independent integrals to
be evaluated fram 90 to 11.
The contribution to a„arising from the set of vertex

diagrams represented by the self-energy diagram a ( =a
though k") of Fig. 8 can be written in the form

a4 z =)t)),M4 ~ +residual renormalization terms
a a

(2.24)

where AM4 p are finite integrals obtained by trivially
modifying those given by Eqs. (3.11), (3.17), and (3.22) of
Ref. 26. Their numerical values, obtained by VEGAS us-
ing 10 —4X10 subcubes and 30—40 iterations for each
integral, are listed in Table III. The values of auxiliary
integrals needed to calculate the total contribution of
group II diagrams are given in Table IV. They were also
evaluated by VEGAS using up to 10 subcubes and 30-40
iterations.
Summing contributions of diagrams a b", c f—",and-

g-k", respectively, we find

Group II
Diagrams of this group are generated by inserting

second- and fourth-order vacuum-polarization loops in
the photon lines of the fourth-order vertex diagrams in
Figs. 6(a) and 6(b}. Note that the diagrams of Fig. 6 can
also be obtained from the fourth-order muon self-energy
diagrams shown in Fig. 7 by inserting an external vertex
in the open muon lines in all possible ways. Vertex dia-
grams derived from the same self-energy diagram share

I / t a

FIG. 7. Fourth-order muon self-energy diagrams containing
no vacuum-polarization loops.

596 T. KINOSHITA, B.NIZIC, AND Y. OKAMOTO 41

e
e

(o)

(a)
(b)

~~er P

(c)

(c)

FIG. 3. Six of the diagrams contributing to subgroup I(b}.

I

I I
I & l /

FIG. 1. Typical eighth-order vertex diagrams from the four
groups contributing to a„.

scattering subdiagram with further radiative corrections
of various kinds. This group consists of 180 diagrams.
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Group I
These diagrams can be classified further into the fol-

lowing gauge-invariant subgroups.

Subgroup I(a). Diagrams obtained by inserting three
second-order vacuum-polarization loops in a second-
order vertex. Seven diagrams belong to this subgroup.
Three are shown in Fig. 2. The other four are obtained
from diagrams of Figs. 2(b) and 2(c) by permuting elec-
tron and muon loops along the photon line.
Subgroup I(b). Diagrams obtained by inserting one

second-order and one fourth-order vacuum-polarization
loops in a second-order vertex. Eighteen diagrams be-
long to this subgroup. Six are shown in Fig. 3.
Subgroup I(c). Diagrams containing two closed fer-

mion loops one within the other. There are nine dia-
grams that belong to this subgroup. Six of them are
shown in Fig. 4.
Subgroup I(d). Diagrams obtained by insertion of

sixth-order (single electron loop) vacuum-polarization
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FIG. 2. Three of the diagrams contributing to subgroup I(a).
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FIG. 4. Six of the diagrams contributing to subgroup I(c).
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a & p =—2.786 4(45},
a4 p p = 4.5586(31)

a4 p =—9.3571(40) .

(2.28}

(2.29)

(2.30)

Combining these results the contribution to a„ from the
90 diagrams of group II is found to be

Note that the multiplicity factor for each term, which ac-
count for equivalent diagrams obtained by time reversal
and/or interchange of electron and muon vacuum-
polarization loops, is shown explicitly in the above for-
mulas. Thus, entries in Table IV do not include multipli-
city factors.
Substitution of the numerical values listed in Tables III

and IV into (2.25)—(2.27) yields

r -rr]
I I ~ 4 ii

/
I I I 4 ~

E

r~~ ri&
I I ~. I a

FIG. 9. Muon self-energy diagrams of the three-photon-
exchange type. Two mere diagrams related to D and 6 by time
reversal are not shown.

a', &' =—16.702(7) .

Group III

(2.31)
2 for a=D, G,
1 for a = A, B,C,E,F,H, (2.33)

0(8)—
ga 6a, p ~

a=A

where

a 6 p =EM6 p +residual renormalization terms

and

(2.32)

These diagrams are generated by inserting a second-
order vacuum-polarization loop into photon lines of
muon vertex diagrams of three-photon-exchange type.
Time-reversal invariance, use of the function pz for the

second-order photon spectral function [see (2.2}],summa-
tion over a set of proper vertex amplitudes that differ
only in where the external magnetic field vertex is insert-
ed, and transformation of these sums with the help of the
Ward-Takahashi identity reduce the number of indepen-
dent integrals to be evaluated from 150 to 8. These in-
tegrals have a one-to-one correspondence with the self-
energy diagrams of Fig. 9 and can be written explicitly in
terms of the parametric functions defined for the latter.
Let M6 p be the Ward-Takahashi-summed magnetic

moment projection of the set of 15 vertex diagrams gen-
erated from a self-energy diagram a ( = A through H) of
Fig. 9 by insertion of a second-order electron vacuum-
polarization loop and an external vertex. The renor-
malized contribution to a„due to the diagrams of group
III can then be written as

which takes account of the time-reversed counterparts of
the self-energy diagrams D and 6 of Fig. 9. AM6 p is
the UV- and IR-finite portion of M6 p where all diver-
gences have been projected out by Ez and IG&z opera-
tions. Integrals b,M6 p (a= A through F and H) were
evaluated by the integration routine vEGAS (Ref. 11}with
10 subcubes, the number of iterations ranging between
30 and 40 depending on the convergence rate of the in-
tegral.
The integral EM6G p required a special treatment be-

cause double precision arithmetic was not accurate
enough to deal with the cancellation of UV divergences
arising from a second-order vertex. This problem was
resolved using quadruple precision arithmetic in a small
region surrounding the singularity. 2 This region (1% of
the whole domain} was sampled with 10 points per itera-
tion while the rest was sampled in double precision with
10 points per iteration. The numbers of interactions
were 34 and 37, respectively.
The latest results of a long sequence of numerical eval-

uation of group III integrals are summarized in the
second column of Table V. The residual renormalization
terms are shown in the third column of the same table.
Numerical values of auxiliary integrals needed in the re-
normalization scheme are listed in Table VI.
When summed over all the diagrams of group III, the

UV- and IR-divergent pieces cancel out and the total
contribution to a„can be written as a sum of finite pieces:

+M ), [I](65m/'p'+65m/&'p') M'","(55m—), +65m)b )—M, (b5mg'z'+55m /&'~)

MPp"[B~c+Bw) 2(~B2)']™z(B~e'p+Bbk"~' 4~B2~BPp') .
I

(2.34)

Plugging in the values listed in Tables V and VI, we ob-
tain

As a byproduct of the calculation described above, one
can also obtain the best numerical value available for the
electron-loop vacuum-polarization contribution to the
sixth-order a„,which can be written as",~»' ——10.793(48) .

a ttt = g 7/ LLM6+ p 3KBgp (EM4 +EM4b ) 35B2(AM/'p+ kMgg'p )+M& ' [I]p(55m 4 +55m 4b }
a=A
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(o) (b)

I

I

I I
!

(c) (4)

LLA LLB LLC LLD

FIG. 10. Representative diagrams of each subgroup of group
IV.

LLK LLF LLG

I
I I
LLH

(8)—(8) (8) (8) (8)aiv =a&v(, ) +a&v(b) +a&v«) +a&v(4)
(1),12) L

X u6LL, P+ g lau8LLa
(1!,12) a= A

(2.37)

where
( I I, 12 (1!,12a 6LI p M6LL p +renormalization terms

8LLa =M8LLa+renOrmahZatiOn termS,

and

(2.38)

(2.39)

energy diagrams LLA, LLB, LLC, and LLD of Fig. 12.
Subgroup IV(c). Diagrams obtained by attaching a sin-

gle virtual-photon line to the muon line of the sixth-order
vertex containing a fourth-order electron-loop light-by-
light scattering diagram. There are 48 diagrams that be-
long to this subgroup. An example is shown in Fig. 10(c).
Summation over external vertex insertions and use of the
interrelations available due to charge-conjugation and
time-reversal symmetries leave five independent integrals
to be evaluated. They are generically represented by the
self-energy diagrams LLE, LLF, LLG, LLH, and LLI of
Fig. 12.
Subgroup IV(d). Diagrams generated by inserting a

fourth-order light-by-light scattering subdiagram inter-
nally in a fourth-order vertex diagram. An example is
shown in Fig. 10(d). Diagrams of this kind appear for the
first time in the eighth order. Charge-conjugation invari-
ance and summation over the external vertex insertion
with the help of the Ward-Takahashi identity leads us to
three independent integrals. They are represented by the
diagrams LLJ, LLK, and LLL of Fig. 12.
The renormalized contribution to the muon anomaly

arising from group IV diagrams can be written in the
standard renormalization scheme as

LLI LLJ LLK LLL

FIG. 12. Self-energy diagrams representing the external-
vertex-summed integrals of subgroups IV(b), IV(c), and IU(d).

2 for a=B,C,F,G,I,
1 for a = A, D,E,H, J,K,L, (2.40)

which follows from the Ward-Takahashi identity and the
fact that self-energy diagrams to which vertex diagrams
of these subgroups are related vanish by Furry's theorem.
On the other hand, the self-energy diagrams from which
diagrams of subgroup (d) are derived are nonzero and the
UV divergence associated with the light-by-light scatter-
ing subdiagram must be regularized in the manner of
Pauli and Villars. For these diagrams it is necessary to
carry out explicit renormalizations of the light-by-light
subdiagram as well as two sixth-order vertex subdiagrams
which contain it. For details see Ref. 29.
Making use of (2.41) and the second-order photon

(ll, 12 )spectral function, one finds that integrals M6LL p are all
finite, implying

{II l2 (ll 12 (ll l2a 6LL, P M6LL, P =™6LL,P (2.42)

so that the contribution of subgroup IV(a) is given by

accounts for diagrams related by time reversal. The fac-
tor 2 coming from equivalent diagrams obtained by rev-
ersing the momentum flow in the electron loop is includ-
ed in the definitions (2.38) and (2.39).
For subgroups (a), (b), and (c), the UV divergence aris-

ing from the light-by-light scattering subdiagram
II" ~r(q, k, ,k, k& ) are taken care of by making use of the
identity
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TABLE III. Contributions from various diagrams of Fig. 8. (g; = 1 or 2 for symmetric and asymmetric diagrams respectively. )

Diagram

IsMgb, p, + bM gb', p

AM4b p p

4b, Pi, 2, PO

~M~b'I i poi

AM4b p +AM4b p

~M4(.',)
AM4b P +AM4b P

g, hM4 p

2.062 l(234)
—6.178 1(97)
2.284 0(201)
—8.744 6(93)
0.053 7(47)
—0.285 5(5)
—0.239 2(9)
5.1869(270)

—11.681 0(51)
0.261 7(4)
—0.9932(18)

Residual renormalization terms

2I—b.'L ~MPp" 2I—((.'L ~Pp'Mg
—6'B M(P" I((.—'BP"M +I MP"2 ,P4 , P4 2 2 , P4

2h—'L P'"M'P'",P2, P2
Ib.'B—f "Mf'", P2 , P2

2h'L—PP'M P" 2I(b'L—P"MPg'
2 P2 P2

Ib'B—fg'Mf)"
giB(g, e)M(gg)
—23k'L M"' —2h'L"" M2 2, P22 2, P22 2

—5'8 M"" —di'8"" M +I M""2 2, P22 2, P22 2 2 2,P
—4h'L M"g' 4I(b'L"—" M2 2, 2:2 2, P2:2 2

2h'B—M"g' 2', 'B"P—"' M +2I M"g'2 2, 2:2 2, 2:2 2 2 2, 2:2

a4 p ——2bMQ p' +bMgb, 'p, , +bMgb, 'p„
I(bBqM ~/—p' bB~q"p'M—~, (2.25)

where Mpp' is equal to b,Mfp' 2I(bB&M p—p' [see
(2.21)], and

4 P2, P2 4a P2, P2 ™4b Pi, .2, PO 2

—hB '"'"M'"'"+26M""'2,P2 2, P2 4a, P2, P2

+b,M4('b "p' p +b,Mgb'p p

gB (Py. )M(P, e) gB(~,e)M(P~) (2.26)

e.9-==- e

I /

(b")

a4 p = 25M'' p +EMs'b p +EMs'b p

—b,B M"' —hB"' M +46M""'2 2, P2:2 2, P2:2 2 4a, P, ,

e e

(c)

+2™4'"')
2

—2b,B M"P'' 2I(bB "P'' M—2 2, 22 2, 22 2 (2.27)

e

(e)

e

I \ I

(g)

'QM;
Term Value Reference

TABLE IV. Auxiliary integrals —Group II. Column 3 lists
relevant equations from Ref. 26. Note, however, that the treat-
ment of terms related to IR subtraction has been changed from
that of Ref. 26 to that of Ref. 27. Thus, equations quoted do not
necessarily correspond exactly to the quantities listed. For in-
stance, EB(pp' in this table is equal to 5'B(pp" +Ib'LzFp'( in the
notation of Ref. 26.

QQ~M N

(j)

.'D M'
I

(k) (k )
FIG. 8. Eighth-order muon self-energy diagrams obtained

from the fourth-order diagrams of Fig. 7 by inserting vacuum-
polarization loops. Seven more diagrams related to a, e, g, i, j,
k', and k" by time reversal are not shown. Shaded circles
represent the sum of all fourth-order vacuum-polarization
loops.

582
~a2( )

gB(g, e(,P2
gB(Pg (

2
gg(e, e)'P22
aB'P'2 22
M2
,P4

M(P",P2
2

M(e, e)' 2:2
M(eg (

2:2

0.75
2.440 8( 11)
1.886 33(8)
0.063 399
5.331 9(15)
0.236 13(6)
0.5
1.494 3(6)
1.094 259 6
0.015 687
2.720 1(3)
0.050 28( 1)

(2.13)
(3.12)
(3.18)
(3.18)
(3.23)
(3.23)
(2.7)
(3.4)
{3.16)
(3.16)
(3.21)
(3.21)
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TABLE II. Auxiliary integrals —Group I. Column 3 lists
relevant equations from Ref. 22. Note, however, that the treat-
ment of terms related to the IR subtraction has been changed
from that of Ref. 22 to that of Ref. 27. Thus, for instance,
6Bp 'p in this table corresponds to EB2 'p +AL p 'p of Ref. 22.

Term

M~/'P)

MP'"
, P2

2, r~~

EB2
gB(e,e)

2, P2
, e)
, P2

gg(eg)
2)

bM)P",P4
EB4,+26L4, +EL4„
B4b+ 2~L&, +~L4I

65m4,
5,5m4b

Value

0.015687
1.094 259 6
—0.16109(3)
0.75
0.063 399
1.886 33(8)
9.405 5 X 10
3.1357(6)
—0.5138(17)
0.542 4(6)—0.301 5(10)
2.208 1(4)

Reference

(3.6)
(3.6)
(4.14)

(4.15)
(4.7)
(4.7)
(4.7)
(4.15)
(4.15)
(4.15)
(4.15)
(4.15)

/&I I
I
I
I

~ggl

] I
'I

I
I

/

I
l

FIG. 6. (a) Fourth-order vertex diagrams with crossed pho-
ton lines. (b) Fourth-order vertex diagrams in which photon
lines do not cross.

where

Vl

4

for i =B,G,H,
for i = A, C,D,F,
for i =E,

(2.20}

and

682 =5'82+ 6'Lq = 4,
AMP' =AM/" +25M/',P4 ,p4 ~P4b

b L ' ' =b L4„+25L~, +b L4i+ 2b L4, ,
aa'4'=Sa4. +aa4b,
b,5m' )=b,5m4, +55m46 .

(2.21)

The quantities in (2.21) are defined in Ref. 22. Their
values are given in Table II. From the numerical values
listed in Tables I and II we obtain

ai(d) =—0.7945(202} . (2.22)

ais'=16. 169(21) . (2.23}

Finally, collecting the results (2.6), (2.11), (2.17), and
(2.22), we find the contribution to the muon anomaly
from the 49 diagrams of group I to be

many properties and the corresponding Feynman in-
tegrals can be combined into a single compact integral
with the help of the Ward-Takahashi identity, simplifying
the computation substantially.
Use of the analytic expressions for the second- and

fourth-order spectral functions for the photon propaga-
tor, the Ward-Takahashi identity, and time-reversal sym-
metry cuts down the number of independent integrals to
be evaluated fram 90 to 11.
The contribution to a„arising from the set of vertex

diagrams represented by the self-energy diagram a ( =a
though k") of Fig. 8 can be written in the form

a4 z =)t)),M4 ~ +residual renormalization terms
a a

(2.24)

where AM4 p are finite integrals obtained by trivially
modifying those given by Eqs. (3.11), (3.17), and (3.22) of
Ref. 26. Their numerical values, obtained by VEGAS us-
ing 10 —4X10 subcubes and 30—40 iterations for each
integral, are listed in Table III. The values of auxiliary
integrals needed to calculate the total contribution of
group II diagrams are given in Table IV. They were also
evaluated by VEGAS using up to 10 subcubes and 30-40
iterations.
Summing contributions of diagrams a b", c f—",and-

g-k", respectively, we find

Group II
Diagrams of this group are generated by inserting

second- and fourth-order vacuum-polarization loops in
the photon lines of the fourth-order vertex diagrams in
Figs. 6(a) and 6(b}. Note that the diagrams of Fig. 6 can
also be obtained from the fourth-order muon self-energy
diagrams shown in Fig. 7 by inserting an external vertex
in the open muon lines in all possible ways. Vertex dia-
grams derived from the same self-energy diagram share

I / t a

FIG. 7. Fourth-order muon self-energy diagrams containing
no vacuum-polarization loops.
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Croatian Renormalization

• Bene Nižić: It is time to go for beer!

• Chorus: Oh!  Why is it time to go for beer?

• Bene: Renormalization works the way they say it does!  Four #^$@*&% loops!!!

• Chorus: Four loops!?!  Gee minus two?!?

• Bene: Yes, Yuko and I isolated all the infinities and renormalized the electric charge.	  
The infinite pieces in the magnetic moment all canceled!!!  Amazing!!!  Four loops!!!

• Chorus: It’s time to go for beer!
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• Electroweak (to two loops, recall m2/M2):

• similar diagrams with Z and H;

• additional diagrams with Ws:

• For BSM: compute diagrams with new 
particles in loop (1 or 2 loops enough).

• Higher order QED at O(e10)—5 loops:

• Compute (a) + (b) & estimate others.
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sums are fractions of M6LI in (2.45), or its equivalent in
(1.7).
One may conclude from this that the most important

tenth-order term comes from 36 Feynman diagrams of
the type shown in Figs. 13(a) and 13(b), which contain
one light-by-light electron loop and two second-order
electron vacuum-polarization loops. It is not difficult to
write down a FORTRAN program for the sum of all these
diagrams, adapting Eqs. (3.13} and (3.19) of Ref. 26 to
this case. We evaluated this integral numerically. Our
result, based on 28 iterations with 10 function calls per
iteration, is

A~z' '(m„/m, ; leading term)=569. 33(61) . (3.2)

Of course, direct evaluation of other terms is much
more tedious. Instead, we shall just give a rough estimate
based on the observation that the effect of second-order
electron loop insertion can be estimated as follows.
First note that such an insertion results in a modification
of the photon propagator of the form (A10). Asymptoti-
cally we find

00',
(0)

I I
I

I
I I I

(b) (c)

q adpi', a =1+—[ —,'In(q /m, )——,']+ .
me

q'»m, ' . (3.3)

Since the logarithm is a slowly varying function of q,
one may replace q by an average value r m „,where r is
a constant of order unity. This means that the insertion
of a vacuum-polarization loop can be effectively reduced
to multiplication by a factor

—K=—[—', ln( rm „/m, )——,
' ] . (3.4)

In order that the approximation (3.4) makes sense, r
should be less than —1 which means that E should be
less than -3.
Let us now estimate the magnitude of E from the pre-

viously calculated results. For example, for the eighth-
order diagrams M6LL p of Fig. 11 we will have

Mszz'z-3KB ~2 '(m„/m, ; light-by-light) . (3.5)

The factor 3 accounts for the number of photon lines in
which an electron vacuum-polarization loop can be in-
serted. Similarly we may fix the parameter E from the
relation

A2' '(m„/m, ; leading term)

-6E A'z '(m„/m„' light-by-light) . (3.6)

The factor 6 arises because two electron vacuum-
polarization loops can be inserted in three photon lines in
six different ways. Using the data from Table VII, and
Eqs. (1.7) and (3.2), we find K=1.86 and 2.13 from (3.5)
and (3.6}, respectively. Examination of other diagrams
yields E mostly in the range from 2 to 2.5 with the excep-
tion of aI» of (2.35) which gives E-4. For our purpose
it is sufficient to choose

E =2-4 . (3.7)

This shows how poor the approximation (3.4) might actu-
ally be. What is most important, however, is that these
K's are all positive. This means that one can confidently
predict the signs of terms obtained by insertion of
vacuum-polarization loops.
It is not difficult to turn this heuristic argument into a

more rigorous one using the renorrnalization-group tech-
nique discussed in the Appendix. However, it will not be
necessary for our present purpose.
As an application of the admittedly very crude method

described above, let us estimate the magnitude of the
term representing the sum of 2072 Feynman diagrams of
the type shown in Fig. 13(c),which are obtained from 518
electron-loop-free eighth-order diagrams by insertion of
an electron vacuum-polarization loop in all possible
manners. Our estimate for this term is

4XEX(—1.98)=—(16—32), (3.8)

I I

I I

(e)

FIG. 13. Some tenth-order diagrams. (a) and (b) are generat-
ed by inserting two electron vacuum-polarization loops in a
sixth-order diagram containing a light-by-light scattering subdi-
agram. There are 36 diagrams of these types. (c) is generated
by inserting an electron vacuum-polarization loop in an
electron-loop-free eighth-order diagram. There are 2072 dia-
grams belonging to this group. (d) contains a six-point electron
loop. This group appears for the first time in the tenth order
and consists of 120 diagrams. (e) and (f) contain two light-by-
light scattering subdiagrams.

where 4 is the number of virtual photons and the factor—1.98 is from Ref. 16.
Similar estimate can be made for each minimal gauge-

invariant subgroup discussed in Sec. II. In view of the
fact that the results (2.23), (2.31), (2.35), as well as (3.1)
and other gauge-invariant results calculable from Table
VII, are no larger than 17 in magnitude and tend to can-
cel each other, one finds that the contribution of tenth-
order diagrams obtained by insertion of a second-order
vacuum-polarization loop in all eighth-order diagrams,
excluding the result (3.2), is likely to be substantially less
than 100.
Tenth-order diagrams that cannot be estimated by the

method discussed above are of the types shown in Figs.

Further Corrections

W

νμ

γ

μ
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Magnetic Moments in the SM with QCD
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• Adding the standard-model contributions [cf. Andreas Höcker, arXiv:1012.0055]:

• The discrepancy is enormous: in these units, 285(63)(49), while EW is only 1951loop – 402loop.

• Experiment, HVP, and HL×L all have to move 2σ to resolve the tension.

Adding the Contributions

13

10

11aµ = 116584718.09(0.15) 4-loop QED

+ 194.8 1-loop EW

� 39.1(1.0) 2-loop EW, with MH = 125 GeV

+ 6923(42) LO HVP from R(e+e� ! hadrons)

� 97.9(0.9) NLO HVP

+ 105(26) HL⇥L from Glasgow consensus

= 116591804(42)(26) Total (shift for knowing Higgs mass is +2)

1011 a
2p

= 116140973.30
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• SM values and compilation from Andreas Höcker, arXiv:1012.0055

Results and Forecasts for aμ

14
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Error Budgets for Muon (g – 2)
error ∝ perimeter; area ∝ weight in sum in quadrature

stats
syst

HL×L
HVP
EW

BNL E821 → FNAL E989 Standard Model Calculation
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Explaining the Anomalous Anomaly BSM
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Explanations beyond the Standard Model
Bill Marciano

• Discrepancy in 1011aμ is 285±80 [Höcker, arXiv:1012.0055].

• Generic susy is sign(μ) 260 (tanβ/8) (200 GeV/Msusy)2; “fits like a glove”.

• Multi-Higgs models; extra dimensions, ….

• Dark photon with MA ≈ 10–150 MeV and αʹ′ = 10–8:

• would be seen the first weekend of planned searches at JLab or Mainz.

• Insanely light Higgs, MH < 10 MeV [Kinoshita & Marciano (1990)]:

• Why doesn’t everyone know why every decade of MH is ruled out?
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Hadronic Contributions and their Constraints
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HVP from e+e– → hadrons vs. hadronic τ decay
F. Jegerlehner

• The cross section for e+e– → hadrons contains the needed vacuum polarization: 

 
 
 




 =
 – radiative corrections
  

 
 


• The partial width for τ → hadrons contains W VP (related to γ VP by isospin): 

 
 
 


 
 
 


 


 =
 ⊕ isospin corrections 

 
 
  

 
 


• Jegerlehner & Szafron [arXiv:1101.2872] find that energy-dependence of mixing in the 2×2 
ρ-γ propagator can resolve the discrepancy.  See also Benayoun et al., arXiv:0907.5603.
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Hadronic Vacuum Polarization

• Integral over space-like momenta [Blum, hep-lat/0212018 (PRL)]: 

 
 


 
 


 
 


 
 


 
 

where 
 (Euclidean—or Weinberg’s—conventions).

• Integral over time-like momenta s = –q2 > 0: 

 
 


 
 


 
 


 


• Split (both) integrals into data (experimental or numerical) portion & pQCD portion.

aHVP
µ =

a
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dt
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p

t2 +4t)4
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• Vacuum polarization function Π(q2) is defined by (Jem for quarks only) 

 
 


 
 


 
 


 
 

which is very smooth: space-like q2!!!

• At time-like q2, dispersion relations can relate this function to its imaginary part, and then the 
optical theorem to the total cross section: 
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
take jagged resonance regions from experiment; rest from pQCD.

Pµn(q2) = (qµ

q

n �dµn
q

2)P(q2) =
Z

d

4
xe

iq·x ⇥Jµ

em(x)J
µ

em(0)⇤
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PDG: e+e– → hadrons

6 41. Plots of cross sections and related quantities

σ and R in e+e− Collisions
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Figure 41.6: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.) See full-color
version on color pages at end of book.
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Lattice QCD: Hadronic Π(q2)
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Hadronic Light-by-light Amplitude

• The contribution to (g–2) is [e.g., arXiv:0901.0306] 

 


 


 


 


 



where QED readily yields 

 


 


 


 


 

and QCD not-so-readily provides
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What Do Data Say about HL×L?
Fred Jegerlehner

• HL×L contains a γ → γ*γ*γ* amplitude, which can be related—by analyticity and optical 
theorem—to cross sections for  γ(*)γ(*) → hadrons.

• Crystal Ball (1988) γγ → hadrons spectrum shows clear peaks for π, η, & ηʹ′ but nothing else.

• Primakoff effect (γN → π0 → γγ) yields pion part of γγγγ*.

• Central π0 production in e+e– (CELLO, CLEO, BaBar, …) yield pion part of γ(*)γ*γγ.

• Axial-vector mesons require off-shell photon(s) (Lee-Yang theorem): data are “sparse”.

• Scalar mesons seen in γγ → ππ; tensor mesons needed too….

• Need to connect data with 0, 2, or 4 photons off shell to amplitude with 3 off shell: models 
inevitably enter: they should be compatible with measurements mentioned here.
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Crystal Ball (1988): π0, η, and ηʹ′ in γγ → γγ
SLAC-PUB-4580, Fig. 2 (see also Fig. 8)
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Dominant contributions

• Hadronic vacuum polarization is dominated by the rho meson (VMD):

• Hadronic light-by-light amplitude is dominated by π (and η, ηʹ′) exchange (normalized by the 
anomaly; well described by Wess-Zumino Lagrangian)

• Of course, the uncertainty is dominated by the other contributions … .

ρ

π
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Estimates of HL×L from Models of QCD

28
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Apology

• Most of the following slides follow the dreadful format “so-and-so gave a nice talk in which 
he* showed this nice plot”.

• Just without the nice plots.

• * At this workshop, all speakers were “he”.
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Glasgow Consensus
Prades, de Rafael, Vainshtein [arXiv:0901.0306]

• Combining several ingredients (covered below), PRV find 1011aμHL×L = 105 ± 26:

• 1011aμHL×L(π, η, ηʹ′) = 114 ± 13 [MV ≈ (ENJL+OPE) ± max.ENJL];

• 1011aμHL×L(a1, etc.) = 15 ± 10 [MV ± 10×MV];

• 1011aμHL×L(scalars) = –7 ± 7 [ENJL ± inflated ENJL];

• 1011aμHL×L(dressed π loop) = –19 ± 19 [ENJL ± inflated ENJL];

• add error estimates in quadrature.
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Extended Nambu–Jona-Lasinio & Chiral Quark Models 
Hans Bijnens (work with Pallante & Prades)

• The chiral quark model has a pion field (χPT) constituent-like quark field:

• quark captures short-distance QCD, but freezes out at long distances;

• pion captures long-distance constraints of chiral symmetry;

• need great care to avoid double counting of long & short (>1 invariant!).

• NJL adds to this four-quark interactions whose bubble sums generate non-NG mesons.

• Thus, combo incorporates obviously needed ingredients: pion & other meson exchange + 
quark loop.

• Hayakawa, Kinoshita, Sanda: meson models, VMD, hidden local symmetry.
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Chiral approach and resonance dominance
Andreas Nyffeler

• The BPP and HKS papers simplify the pion exchange amplitude 
	 	 	
	 	 	
	 	 	
	 	 	
	
with	 . 

• Off-shell effects should enter.  How large are they?

• Can be estimated only using resonance models, and in a model calculation of HL×L, this is 
not an essentially new ingredient: estimates 1011aμHL×L(off shell) ≈ 35–40.

• NB: magnetic susceptibility	 constrains meson exchanges [Belyaev & Kogan, 
1984]; can be calculated in lattice gauge theory.
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• In the limit
 , the OPE relates FT〈VVVV〉 to FT〈AVV〉 [hep-ph/0312226]:

• fixes normalization of pseudoscalar and axial-vector exchanges in these kinematics;

• in particular,	 matches low-energy normalization from anomaly;

• facilitates introduction of a model function to interpolate between limits (in contrast to 
model Lagrangians of other approaches);

• MV choose an Ansatz; you could choose yours.

• Despite any limitations of MV’s Ansatz, it should be clear that model Lagrangians in other 
approaches should satisfy their OPE constraint.

Using Constraints from Operator Product Expansion
Arkady Vainshtein; Kiril Melnikov
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Two-loop Chiral Perturbation Theory
Michael Ramsay-Musolf

• Notes that χPT provides useful, model-independent constraint of pion contribution:

• pion pole term yields ln2; single ln from π → e+e–; last LEC from lattice

• BR(π → e+e–) from KTeV 2007 should reduce uncertainty in single ln.

• Resonances built up from higher-order contributions:

• MRM + students computing full 2-loop χPT HL×L.

• Pion loops will need further LECs from pion charge radius and pion polarizability.

• This seems like a hard way to gain real improvement, but I think these calculations could 
guide chiral extrapolation of QED+QCD method.
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Schwinger-Dyson Equations (DSE)
Richard Williams

• Start with (exact) Dyson-Schwinger eq’ns for dressed propagators, vertex, 4-pt function.

• Introduce “model” functions (e.g., Maris-Tandy) that satisfy—

• Ward identities;

• good agreement with phenomenology in other applications;

• good agreement with lattice calculations (in Landau gauge).

• Keep large Nc part in DSE resummation (i.e., neglect non-planar and 2- & 3-gluon vtx).

• Results: 1011aμHVP = 6700 & 1011aμHL×L = 217 ± 91 [arXiv:1012.3886] or 147 ± 91 [this talk?]; 
compare: 1011aμHVP = 6923 ± 42 [data] & 1011aμHL×L = 105 ± 26 [consensus, arXiv:0901.0306].
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Compilation of Models: Consensus?
Andreas Nyffeler

- p. 32

Hadronic light-by-light scattering in the muon g − 2: Summary
Some results for the various contributions to aLbyL;had

µ × 1011:
Contribution BPP HKS, HK KN MV BP, MdRR PdRV N, JN FGW

π0, η, η′ 85±13 82.7±6.4 83±12 114±10 − 114±13 99 ± 16 84±13

axial vectors 2.5±1.0 1.7±1.7 − 22±5 − 15±10 22±5 −

scalars −6.8±2.0 − − − − −7±7 −7±2 −

π, K loops −19±13 −4.5±8.1 − − − −19±19 −19±13 −

π,K loops
+subl.NC

− − − 0±10 − − − −

other − − − − − − − 0±20

quark loops 21±3 9.7±11.1 − − − 2.3 21±3 107±48

Total 83±32 89.6±15.4 80±40 136±25 110±40 105 ± 26 116 ± 39 191±81

BPP = Bijnens, Pallante, Prades ’95, ’96, ’02; HKS = Hayakawa, Kinoshita, Sanda ’95, ’96; HK = Hayakawa, Kinoshita ’98, ’02; KN = Knecht, Nyffeler
’02; MV = Melnikov, Vainshtein ’04; BP = Bijnens, Prades ’07; MdRR = Miller, de Rafael, Roberts ’07; PdRV = Prades, de Rafael, Vainshtein ’09; N =
Nyffeler ’09, JN = Jegerlehner, Nyffeler ’09; FGW = Fischer, Goecke, Williams ’10, ’11 (used values from arXiv:1009.5297v2 [hep-ph], 4 Feb 2011)

• Pseudoscalar-exchange contribution dominates numerically (except in FGW). But other
contributions are not negligible. Note cancellation between π,K-loops and quark loops !

• PdRV: Do not consider dressed light quark loops as separate contribution ! Assume it is
already taken into account by using short-distance constraint of MV ’04 on
pseudoscalar-pole contribution. Added all errors in quadrature ! Like HK(S). Too optimistic ?

• N, JN: New evaluation of pseudoscalars. Took over most values from BPP, except axial
vectors from MV. Added all errors linearly. Like BPP, MV, BP, MdRR. Too pessimistic ?

• FGW: new approach with Dyson-Schwinger equations. Is there some double-counting ?
Between their dressed quark loop (largely enhanced !) and the pseudoscalar exchanges.
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Lattice QCD
arXiv:1203.1204, arXiv:1209.3468
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Lattice Gauge Theory
K. Wilson, PRD 10 (1974) 2445

• Invented to understand asymptotic freedom without the need for gauge-fixing and ghosts 
[Wilson, hep-lat/0412043].

• Gauge symmetry on a spacetime lattice:

• mathematically rigorous definition of QCD functional integrals;

• enables theoretical tools of statistical mechanics in quantum field theory and provides a 
basis for constructive field theory.

• Lowest-order strong coupling expansion demonstrates confinement.

⇤•⌅ =
1
Z

Z
DUD�D�̄exp(�S) [•]
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Numerical Lattice QCD

• Nowadays “lattice QCD” usually implies a numerical technique, in which the functional 
integral is integrated numerically on a computer.

• A big computer.

• Some compromises:

• finite human lifetime ⇒ Wick rotate to Euclidean time: x4 = ix0; 

• finite memory ⇒ finite space volume & finite time extent;

• finite CPU power ⇒ light quarks often heavier than up and down.
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• Infinite continuum: uncountably many d.o.f. 
  
(⇒ UV divergences);

• Infinite lattice: countably many; used to define QFT;

• Finite lattice: finite dimension ~ 108, so compute 
integrals numerically.

a

L = NSa

L 4 =
 N

4a

Lattice Gauge Theory

⇤•⌅ =
1
Z

Z
DUD�D�̄exp(�S) [•]
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hand

• Infinite continuum: uncountably many d.o.f. 
  
(⇒ UV divergences);

• Infinite lattice: countably many; used to define QFT;

• Finite lattice: finite dimension ~ 108, so compute 
integrals numerically.

a

L = NSa

L 4 =
 N

4a

Lattice Gauge Theory

⇤•⌅ =
1
Z

Z
DUD�D�̄exp(�S) [•]
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MC hand

• Infinite continuum: uncountably many d.o.f. 
  
(⇒ UV divergences);

• Infinite lattice: countably many; used to define QFT;

• Finite lattice: finite dimension ~ 108, so compute 
integrals numerically.

a

L = NSa

L 4 =
 N

4a

Lattice Gauge Theory

⇤•⌅ =
1
Z

Z
DUD�D�̄exp(�S) [•]
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• QCD observables (quark integrals by hand): 

• Quenched means replace det with 1. 	 (Obsolete.)

• Unquenched means not to do that.

• Partially quenched (usually) doesn’t mean “nf too small” but mval ≠ msea, or even D/ val ≠ D/ sea 
(“mixed action”).

h•i= 1

Z

Z
DU

n f

’
f=1

det(D/+m f )exp

�
�S

gauge

�
[•0]

Some Jargon
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• lattice NS3×N4, spacing a

• memory ∝ NS3N4 = LS3L4/a4

• τg ∝ a–(4+z), z = 1 or 2.

• τq ∝ (mqa)–p, p = 1 or 2.

• Imaginary time:

• static quantities

• size LS = NSa, L4 = N4a; 

• dimension of spacetime = 4

• critical slowing down

• especially dire with sea quarks

• thermodynamics: T = 1/N4a

Some algorithmic issues
e.g., ASK, hep-lat/0205021

h•i =
1

Z

Z
DUDyD ¯yexp(�S) [•]

= Tr{•e� ˆH/T}/Tr{e� ˆH/T}
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Sea Quarks

• Staggered quarks, with rooted determinant, O(a2).

• Wilson quarks, O(a):

• tree or nonperturbatively O(a) improved ⇒ O(a2);

• twisted mass term—auto O(a) improvement ⇒ O(a2).

• Ginsparg-Wilson (domain wall or overlap), O(a2):

•  D/γ5 + γ5 D/  = 2a D/2   implemented w/ sign(D/W).
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• Many numerical simulations with sea quarks are called (perhaps misleadingly) 
“unquenched” or “full QCD.”

•  nf = 2: with same mass, omitting strange sea;

•  nf = 3: may (or may not) imply 3 of same mass;

•  nf = 2+1: strange sea + 2 as light as possible for up and down;

•  nf = 2+1+1: add charmed sea to 2+1.

• “Full QCD” can also mean mval = msea, or D/val = D/ sea.
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Computing HVP and HL×L with Lattice Gauge Theory
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Lattice QCD for g–2

• With lattice QCD, one can compute	 or	 (from first 
principles) and convolute the result with QED Feynman diagrams.

• In addition to usual worries (continuum limit, physical pion cloud), need q ~ mμ, so might 
expect to need box-size a few times π/mμ ~ 6 fm.

• Structure in Green functions expected at two QCD scales: mπ ≈ 1.3mμ and mρ ≈ 7mμ; also 
need to match onto pQCD regime.

• HVP 2-pt function has 2 (1) form factors; HL×L has 138 (43 by gauge symmetry; 32 in g–2).

• In the end, need only two numbers, HVP (≈ 7000) to 0.2%, HL×L (≈ 100) to 5%, to match 
measurement of approved experiment Fermilab E989.

• Probably need cleverness, not just brute force.

FThV
µ

(x)Vn(0)i
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• Not just for processes sketched in the top 
figure (for both vacuum polarization and HL×L).

• All fermion lines/loops connected to initial or 
final state must be treated separately:

• “disconnected diagrams”—

• present because photon is flavor singlet;

• really, really demanding.

• As far as I know, no one has attempted a fully 
disconnected calculations for HL×L or HVP.

Sea Quarks are Necessary for g–2
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QCD+QED: Direct Calculation of HL×L
Tom Blum

• Computing FT〈VVVV〉 seems difficult and unnecessarily so.

• Need one number: the (hadronic part of the) muon’s magnetic form factor at q2 = 0.

• Compute F2(0) in lattice QCD+QED (QED quenched for now):

• need subtraction to eliminate some QED renormalization parts;

• successful in pure QED for muon, not for electron—signal ~ (mleg/mloop)2, noise same;

• in QCD+QED, muon suffers from the same problem—constituent mloop ~ mµ.

• Smells like a promising way forward; see also Blum’s talk at 〈Lattice|    |Experiment〉.
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Two Approaches to Form Factor for πγ(*)γ*
Shoji Hashimoto

• Space-like [arXiv:0912.0253]:

• standard lattice QCD form factor techniques;

• ABJ anomaly reproduced (most involved calculation ever) ⇒ precise pion width;

• limited range of momentum transfer: twisted bc? constrain with unitarity & analyticity?

• Time-like [S. Cohen et al., arXiv:0810.5550]:

• exploit masses of vector mesons to get to time-like q2 = p2 – mV2 < 0;

• pilot study by JLab group; new preliminary work by JLQCD.
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HVP with 2 Twisted-mass Sea Quarks
Karl Jansen

• Lattice calculations of aμHVP pioneered by Blum, 
Blum & Aubin.

• New, and precise, calculation of up-down 
contribution to HVP (data 108aμHVP = 5.66 ± 0.05):

• first attempt lacked control of chiral 
extrapolation: head scratching: resolution:

• solving this problem: 108aμHVP = 5.66 ± 0.11;

• agrees with expt and error is only twice;

• Now attack with 2+1+1 flavors of sea quarks!!!
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R. Van de Water Lattice-QCD progress in hadronic contributions to muon g-2

Lattice calculations of HVP

Several independent efforts ongoing

Use same general method, but introduce different improvements to address some of the most significant sources 
of systematic uncertainty
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[1] Aubin & Blum, Phys.Rev. D75 (2007) 114502
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Collaboration Nf Fermion action aHVP
µ ⇥ 10

10

Aubin & Blum 2+1 Asqtad staggered 713(15)stat(31)�PT(??)other

ETMC 2 twisted-mass 572(16)total

ETMC (preliminary) 2+1+1 twisted-mass 674(21)stat(18)sys(??)disc

Edinburgh 2+1 domain-wall 641(33)stat(32)sys(??)disc

Mainz 2 O(a) improved Wilson 618(64)stat+sys(??)disc
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R. Van de Water Lattice-QCD progress in hadronic contributions to muon g-2

Recent developments
Twisted boundary conditions [Della Morte et al., JHEP 1203 (2012) 055]

Because of finite spatial lattice size (volume=L3),
simulations with periodic boundary conditions
can only access discrete momentum values in
units of (2π/L) [red points]

➡Lattice data sparse and noisy in low-Q2

region where contribution to aμHVP is largest

Introduce twisted B.C. for fermion fields to
access momenta below (2π/L) [blue points]

Padé approximants [Aubin et al.,Phys.Rev. D86 (2012) 054509]

Even with twisted B.C., contributions to aμHVP from Π(Q2) for momenta below the range directly accessible in current 
lattice simulations are significant

➡Must assume functional form for Q2 dependence and extrapolate Q2→0

Use model-independent fitting approach based on analytic structure of Π(Q2) to eliminate systematic associated with 
vector-meson dominance fits 
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R. Van de Water Lattice-QCD progress in hadronic contributions to muon g-2

First four-flavor result (preliminary)

Error estimate does not yet include 
sea-quark mass mistuning (small) or 
quark-disconnected contributions 
(as much as ~10%?)

53

[Grit Hotzel for ETM Collaboration, Lattice 2013]

aμHVP = 6.74(21)stat(18)syst × 10–8
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R. Van de Water Lattice-QCD progress in hadronic contributions to muon g-2

(1)Chiral extrapolation

Simulations at the physical pion mass are underway

(2)Quark-disconnected contributions

Noisy and difficult to compute with
good statistical accuracy

Chiral Perturbation Theory estimate
suggests that they could be of O(10%)
[Della Morte & Jüttner, JHEP 1011 (2010) 154]

(3)Charm sea-quark contributions

Simulations with dynamical charm quarks are underway

Perturbative QCD estimate suggests that charm contribution could be comparable to entire size of HLbL or 
EW contributions [Bodenstein et al., PRD85 (2012) 014029 ]

(4)Isospin breaking

Will become relevant once the precision reaches the percent level

Can all be addressed straightforwardly with sufficient computing resources

µµ

Remaining issues

54
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Conclusions and Outlook
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Where is the way out?

56

• Models are faced with several 
obstacles (my opinion):

• solidification possible, but …

• E989 accuracy cannot be met.

• Leaves lattice gauge theory:

• QCD for HVP;

• QCD+QED for HL×L.
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Needs for g–2
ASK

• Let’s assume that the monkey-on-your-back topology can be safely neglected (likely).

• Let’s assume that the HVP to needed precision comes along with HL×L (not obvious).

• Let’s focus on QCD+QED: easier to forecast one number than many form factors.

• BCHIYY find 100% error using 10–2 Tflop s-1 yr, and planning “reasonable” calculation with 
10 Tflop s-1 yr.  Target 10% (5%) needs—naïvely—a factor of 100 (400) more computing:

• 1–5 Tflop s-1 yr needed.

• Caveats: with 100% error it is hard to foresee obstacles both surmountable and 
unsurmountable.  Estimate is, thus, more likely to be over-pessimistic or over-optimistic 
than accurate.
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Resources for g–2
ASK

• “Luminosity” formula: resource = fg–2 × budget × Moore’s Law; fg–2 = fraction for g–2:

• USQCD Moore’s Law: 2t/1.6 Tflop s–1 ($M)–1;
 (now t = years since 2005.09)

• USQCD budget experience: 2.9×2t/10.5 $M yr–1;
  (omits Tea Party effects)

• TB et al. are increasing fg–2 from 10–4 to 10–2.

• Predict resource of 5 Tflop s–1 yr in 2016.

• Coincides with forecast of computing need.

• Several groups engaged: perhaps even human resource will be available.
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Two-Sentence Summary

• Lattice QCD will compute HVP on the timescale of E989, …

• … first weighing in on difference between e+e– and τ decay, and …

• … later replacing them & hitting the target set by E989.

• Lattice QCD is the only foreseeable way to solidify and, eventually, reduce the uncertainty in 
HL×L, but …

• … it is a research project, not yet a programmatic calculation.
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Thank you for your attention!
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Extras
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