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I. EVIDENCE

A. Rotation Curves

• Simple approximation is spherical distribution

a =
v2

r
=
GM(r)

r2
(1)

or v ∝ r−1/2 far from the gas and stars

• Flat rotation curves observed far from the central region where stars and gas are

located

• Fit with 3 parameters (mass to light ratio of stars and 2 DM profile parameters); flat

rotation curves if ρDM ∝ r−2

B. Lensing

• Tangential shear around a galaxy (far from the mass) satisfies

γt(R) =
〈Σ(< R)〉

Σcr

(2)

where

〈Σ(< R)〉 ≡ 1

πR2

∫
R′<R

d2R′Σ(R′)→ M

πR2
(3)

and Σcr ≡ Ds

4πGDLDLS
.

• Instead we observe tangential shear out to large radii as in Fig. 1. Falls off much more

slowly than 1/R2
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FIG. 1: Inferred average surface density (〈
∫
dzρ(R, z)〉) as a function of distance from galaxy

centers. If the mass was concentrated in the center, this would fall off as R−2. The much milder

fall-off is evidence for dark matter. From 1207.1120.

C. Clusters

Our thinking of clusters is impossible to disentangle from dark matter.

• mass in galaxies much less than mass in gas much less than mass in dark matter

• formation in the context of dark matter “halos”; predictions for the number of these

as a function of mass and redshift

• X-Ray observations relate temperature to total mass

• weak lensing measurements model independent measurements of mass, again require

dark matter

• CMB observations of clusters (SZ effect) tightly correlated with mass (using simula-

tions and lensing/X-ray calibrations)
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D. Large Scale Perturbations

• Any quantity, like δ, δT , or Φ has zero mean so all the information is contained in the

variance or power spectrum

• Best to think of Fourier space quantities, since small perturbations are linear so do

not mix Fourier modes: 〈Φ̃(~k)Φ̃(~k′)〉 = (2π)3δ3(~k + ~k′)PΦ(k)

• Real space fluctuations were initially scale-invariant:

〈Φ2(x)〉 =
∫ d3k

(2π)3
PΦ(k) =

∫ ∞
0

dk

k

k3PΦ(k)

2π2
(4)

so PΦ ∝ k−3 initially

• Cartoon: large scale Φ remains constant in time; small scale Φ decays during radiation

era and then remains constant

• Important to compare comoving wavelengths 1/k with comoving Horizon 1/(aH);

modes with k � aH are inside the horizon and can evolve causally; modes outside the

horizon are acausal so do not evolve

E. Galaxy Power Spectrum

• δ does not grow until matter domination

• Then

δ̈ + 2Hδ̇ − 4πGρ̄δ = 0 (5)

leads to p(p− 1) + (4/3)p− (3/2)(2/3)2 = 0 or p2 + p/3− (2/3) = 0 or δ ∝ a

• Poisson equation dictates that k2Φ = 4πGρ̄a2δ → Φ =constant (consistent with what

we said above)

• Since k3PΦ(k) = constant for all scales that entered the horizon after matter domina-

tion and decays on smaller scales, Pδ ∝ k4PΦ ∝ k on large scales, with the turn-over

scale corresponding to that that entered the horizon at equality kEQ = aEQH(aEQ), so

turnover scale determines the matter density.



4

FIG. 2: Green region: Constraint on matter density and Neff , the number of light neutrino species

(equal to 3 in the standard model), from the turnover in the power spectrum (from 1211.5605).

• Another important feature of power spectrum k3Pδ/2π
2, which quantifies fluctuations

in the density is greater than one today on small scales. This ensures that we exist

and would not have happened without DM, since we can pin down the amplitude

of the baryon-photon perturbations at decoupling (of order 1 part in 104) and com-

pute by how much they’ve grown (a factor of 1000). This is not enough to generate

nonlinearities

• Both of these point to matter density 6 times larger than the baryonic content inferred,

e.g., from nucleosynthesis

F. CMB

• Basic equation is the wave equation forced by gravity:

T̈ + k2c2
sT = F [Φ] (6)
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where the sounds speed is smaller than c/
√

3 because the photons are coupled to

baryons.

• Acoustic oscillations: for fixed k, amplitude oscillate with time. For fixed time, am-

plitudes oscillate with k.

• Nature of oscillations determined by characteristics of fluid. E.g. higher baryon density

leads to smaller frequency, which leads to zero-point of oscillations more displaced:

more disparity between first and second peaks

• Effects of gravitational forcing sensitive to the matter density and these too leave a

distinctive imprint on the oscillations.

• CMB alone measures very robustly that the matter density is 6 times larger than the

baryon density

FIG. 3: Constraints from Planck CMB measurements. Notice in the second row, first column that

the baryon density is constrained to be 6 times smaller than the cold dark matter density.



6

II. PROBLEMS

A. Satellites

• Simulations predict many low mass sub-halos

• Roughly the correct amount of massive sub-halos are seen in the MW, but the number

of lighter sub-halos is too small

FIG. 4: Predicted vs. observed sub-halos (0906.3295).

• Some observational issues (measuring vmax; anisotropy; completeness), but the major

difficulty is relating observed galaxies to predicted dark matter sub-halos

B. Cusp or Core

• simulations predict a cusp: ρ ∝ r−1 or v ∝ r1/2 on small scales. Variety of results over

the last 15 years, but this general result still holds at least down to r = 0.1 kpc. Slope

is much closer to −1 than to 0.
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• data from dwarf galaxies well-fit assuming dark matter distribution is cored (e.g. ρ ∝ C

as r → 0), so that v ∝ r (at least the contribution from DM) on small scales

• could reconcile with “baryon blow-out” but require a lot of baryons to be expelled

• can check this idea in late-type Low Surface Brightness galaxies, which are much larger,

therefore have deeper potential wells from which it would be much more difficult to

expel baryons. Also, those found seem to be pretty quiet. Problem seems to persist,

may require high resolution hydro sims

III. ALTERNATIVES: MOND

A. Rotation Curves; H0

• Poisson usually says ∇2Φ ∝ MThe gravitational force per mass in a circular orbit in

Newton’s theory is aN = v2/r. Suppose this changes to

aN → aNµ(aN/a0) (7)

where

µ(x) =

{
1 x� 1

x x� 1
. (8)

So as long acceleration is greater than a0, we get the standard result. In the small

acceleration limit though,
a2
N

a0

=
MG

r2
(9)

so that v4 = a0MG, a flat rotation curve.

• This also predicts that L ∝ v4, a phenomenological law that is observed and difficult

to explain in dark matter models.

• You can guess the typical value of a0 by using v ∼ 200km/sec and r ∼ 5 kpc. Roughly

a0/c is not too different than H0 = 70km/sec/Mpc.

• This should impress you: there are also modified gravity models that explain the accel-

eration of the universe. All of these have a fundamental parameter in the Lagrangian

of order H0 ∼ 10−33eV. This could be coincidence or a hint that there is new physics

at this IR scale.
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B. Scalar Tensor Models

The first few pages of Bekenstein’s paper (0403694) give an excellent review of twenty

years of work in this field.

• MOND is not a fully relativistic theory, from which predictions can be made.

• GR implicitly equates the metric that characterizes the curvature of space-time (the

one that appears in the Einstein-Hilbert action) and the one that dictates how particles

move. Scalar-tensor models differentiate between the two metrics:

SEH =
1

16πG

∫
d4x
√
−gR(g)

Sm =
∫
d4x

√
−g̃Lm (10)

In scalar tensor models, the two are related via gµν = e2φ/mPlanck g̃µν .

• A scalar-tensor model is defined by the action for the scalar field. The simplest way

to implement MOND is to choose the Lagrangian for φ to be

Lφ =
a2

0

8πG
f

(
8πG

a2
0

∂µφ∂
µφ

)
(11)

A suitably chosen f reduces to MOND.

C. Lensing

• Photons behave the same in scalar-tensor models as they do in GR. Proof:

0 = ds2 = gµνdx
µdxν →S.T. e

2φ/mPlanckgµνdx
µdxν (12)

• All lensing is done by baryons and there are not enough baryons in galaxies or clusters

to account for observed lensing.

D. TeVeS

Introduce another new field, a vector field, to break the theorem by setting

g̃µν = e−2φ/mPlanck [gµνdx
µdxν + 8πGAµAν ] + 8πGAµAνe

2φ/mPlanck (13)

The vector field gives extra lensing.
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E. Growth of Structure

Vector field, which was introduced to solve the problem of lensing, drives enhanced growth

of structure (0608602). This is necessary in order to get from inhomogeneities observed at

the time of the CMB to the nonlinear level.

FIG. 5: Dimensionless measure of clumpiness. Data points shown in red. No-dark-matter model

with normal growth of structure is dashed blue line. The universe remains linear and no interesting

structures (including us) can form. The solid blue line shows that TeVeS, the model with an

additional vector field, enhances the growth of structure so that the Universe can go nonlinear.

From 1112.1320, which is short and readable.

F. Baryon Acoustic Oscillations

Note in Fig. 5 that, although the amplitude of the power spectrum is ok, the shape is

decidedly not. There are very large acoustic oscillations. These are present in the baryons

in dark matter models but only at the few percent level (because dark matter dominates

the gravitational potentials). This prediction of huge order one oscillations in the spectrum
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is a big problem for any no-dark-matter model, including TeVeS.

Appendix A: Some cosmological facts

• Mpc = 3× 1024 cm

• FRW metric: ds2 = −dt2 + a(t)2dx2

• Hubble expansion rate: H = ȧ/a

• Hubble rate today is called the Hubble constant and is measured to be about 70

km/sec/Mpc, sometimes written as H0 = 100h km/sec/Mpc

• Friedmann equation: H2 = 8πGρ/3 where ρ counts all the contributions to the energy

density

• Energy census in units of critical density: Species i today contributes a fraction Ωi ≡

ρi/ρcr, with ρcr ≡ 3H2
0/(8πG) = 4× 10−11 eV4

• Photon density: Ωγ = 1.2× 10−5

• Baryon density: Ωb = 0.05

• Matter density: Ωm = 0.26

• Total density: Ω = 1

• aEQ = 4.15× 10−5/(Ωmh
2) = 2.91× 10−4


