
Introducing C++0x

Bjarne Stroustrup
Texas A&M University
http://www.research.att.com/~bs

Stroustrup - Fermilab'10

Overview
• Aims, ideals, and history
• C++
• Design rules for C++0x

– With tiny examples
• A case study

– concurrency

3

Stroustrup - Fermilab'10

Programming languages
A programming language exists to help people express ideas

• Programming language features
exist to serve design and
programming techniques

• The primary value of a
programming language is in the
applications written in it

• The quest for better languages has been long and must continue
4

Programming Languages

Assembler

Cobol

Fortran

C++

C

Simula

C++0x

General-purpose abstraction

Domain-specific
abstraction

Direct mapping to
hardware

Java

C#BCPL

Stroustrup - Fermilab'10 5

Ideals
• Work at the highest feasible level of abstraction

– More general, correct, comprehensible, and maintainable code

• Represent
– concepts directly in code
– independent concepts independently in code

• Represent relationships among concepts directly
– For example

• Hierarchical relationships (object-oriented programming)
• Parametric relationships (generic programming)

• Combine concepts
– freely
– but only when needed and it makes sense

Stroustrup - Fermilab'10 6

Stroustrup - Fermilab'10

C with Classes –1980
• General abstraction mechanisms to cope with complexity

– From Simula
• General close-to-hardware machine model for efficiency

– From C

• Became C++ in 1984
– Commercial release 1985

• Non-commercial source license: $75
– ISO standard 1998
– C++0x Final Draft Standard 2010

• 2nd ISO standard 200x (‘x’ is hex )

7

C++ applications

Stroustrup - Fermilab'10 8

C++ Applications

• www.research.att.com/~bs/applications.html

Stroustrup - Fermilab'10 9

C++ Applications

www.lextrait.com/vincent/implementations.html

Stroustrup - Fermilab'10 10

Stroustrup - Fermilab'10

C++ ISO Standardization
• Slow, bureaucratic,

democratic, formal process
– “the worst way, except for all the rest”

• (apologies to W. Churchill)

• About 22 nations
(5 to 12 at a meeting)

• Membership have varied
– 100 to 200+

• 200+ members currently
– 40 to 100 at a meeting

• ~60 currently

• Most members work in industry
• Most members are volunteers

– Even many of the company representatives
• Most major platform, compiler, and library vendors are represented

– E.g., IBM, Intel, Microsoft, Sun
• End users are underrepresented

11

Overall goals for C++0x

• Make C++ a better language
for systems programming and
library building
– Rather than providing specialized

facilities for a particular sub-
community (e.g. numeric
computation or Windows-style
application development)

– Build directly on C++’s contributions
to systems programming

• Make C++ easier to teach and learn
– Through increased uniformity, stronger guarantees, and

facilities supportive of novices (there will always be more
novices than experts)

Stroustrup - Fermilab'10 12

C++0x

• ‘x’ may be hex, but C++0x is not science fiction
– Every feature is implemented somewhere, e.g.,

• GCC 4.6: Rvalues, Variadic templates, Initializer lists, Static
assertions, auto-typed variables, New function declarator syntax,
Lambdas, Right angle brackets, Extern templates, Strongly-typed
enums, Delegating constructors (patch), Raw string literals, Defaulted
and deleted functions, Inline namespaces, Local and unnamed types
as template arguments

• Microsoft 2010: auto, lambdas, concurrency
– Standard library components are shipping widely

• E.g. GCC, Microsoft, Boost
– The last design points have been settled

• The committee is processing formal requests from National Standards
Bodies

Stroustrup - Fermilab'10 13

Rules of thumb / Ideals
• Integrating features to work in combination is the key

– And the most work
– The whole is much more than the simple sum of its part

• Individual features must serve articulated ideals
– Maintain stability and compatibility
– Prefer libraries to language extensions
– Prefer generality to specialization
– Support both experts and novices
– Increase type safety
– Improve performance and ability to work directly with hardware
– Make only changes that change the way people think
– Fit into the real world

Stroustrup - Fermilab'10 14

Maintain stability and compatibility
• “Don’t break my code!”

– There are billions of lines of code “out there”
– There are millions of C++ programmers “out there”

• “Absolutely no incompatibilities” leads to ugliness
– We introduce new keywords as needed: auto (recycled), decltype,

constexpr, thread_local, nullptr
– We try hard to avoid choosing keywords that clash with existing code
– Example of incompatibility:

static_assert(4<=sizeof(int),"error: small ints");

Stroustrup - Fermilab'10 15

Support both experts and novices
• Example: minor syntax cleanup

vector<list<int>> v; // note the “missing space”

• Example: deduced type:
auto x = v.begin(); // x becomes a vector<list<int>>::iterator

• Example: simplified iteration
for (auto x : v) cout << x <<'\n';

• Note: Experts don’t easily appreciate the needs of novices
– Example of what we couldn’t get just now

string s = "12.3";
double x = lexical_cast<double>(s); // extract value from string

Stroustrup - Fermilab'10 16

Uniform initialization
• You can use {}-initialization for all types in all contexts

int a[] = { 1,2,3 };
vector<int> v = { 1,2,3};

vector<string> geek_heros = {
"Dahl", "Kernighan", "McIlroy", "Nygaard ", "Ritchie", "Stepanov"

};

std::thread t{}; // default initialization
// remember “thread t();” is a function declaration

complex<double> z{1,2}; // invokes constructor
struct S { double x, y; };
S s {1,2}; // no constructor (just initialize members)

Stroustrup - Fermilab'10 17

Uniform initialization
• {}-initialization X{v} yields the same value of X in every context

X x{a};
X* p = new X{a};
z = X{a}; // use as cast

void f(X);
f({a}); // function argument (of type X)

X g()
{

// …
return {a}; // function return value (function returning X)

}

Y::Y(a) : X{a}, m{a} { /* … */ }; // base class and member initializers

Stroustrup - Fermilab'10 18

Uniform initialization
• {}-initialization does not narrow

int x1 = 7.9; // x1 becomes 7
int x2 {7.9}; // error: narrowing conversion

Table phone_numbers = {
{ "Donald Duck", 2015551234 },
{ "Mike Doonesbury", 9794566089 },
{ "Kell Dewclaw", 1123581321 }

};

Stroustrup - Fermilab'10 19

Prefer libraries to language extensions
• Libraries deliver more functionality
• Libraries are immediately useful
• Problem: Enthusiasts prefer language features

– see library as 2nd best

• Example: New library components
– std::thread, std::future, …
– std::unordered_map, std::regex, …

• Threads ABI; not thread built-in type, not built-in associative array, …

• Example: Mixed language/library extension
– The new for works for every type with std::begin() and std::end()
– The new initializer lists are based on std::initializer_list<T>

vector<string> v = { "Nygaard", "Ritchie" };
for (auto& x : {y,z,ae,ao,aa}) cout << x << '\n';

Stroustrup - Fermilab'10 20

Prefer generality to specialization
• Example: Improvements to abstraction mechanisms

– Inherited constructor
template<class T> class Vector : std::vector<T> {

using vector::vector<T>; // inherit all constructors
// …

};

– Move semantics supported by rvalue references
template<class T> class vector {

// …
vector(vector&& a); // move constructor

// don’t copy: grab a’s representation
};

• Problem: people love small isolated features
Stroustrup - Fermilab'10 21

Move semantics
• Often we don’t want two copies, we just want to move a value

vector<int> make_test_sequence(int n)
{

vector<int> res;
for (int i=0; i<n; ++i) res.push_back(rand_int());
return res; // move, not copy

}

vector<int> seq = make_test_sequence(1000000); // no copies

• New idiom for arithmetic operations:
– Matrix operator+(const Matrix&, const Matrix&);
– a = b+c+d+e; // no copies

Stroustrup - Fermilab'10

Not a reference

22

Increase type safety
• Approximate the unachievable ideal

– Example: Strongly-typed enumerations
enum class Color { red, blue, green };
int x = Color::red; // error: no Color->int conversion
Color y = 7; // error: no int->Color conversion
Color z = red; // error: red not in scope
Color c = Color::red; // fine

– Example: Support for general resource management
• std::unique_ptr (for ownership)
• std::shared_ptr (for sharing)
• Garbage collection ABI

Stroustrup - Fermilab'10 23

Improve performance and the ability to work
directly with hardware

• Embedded systems programming is very important
– Example: address array/pointer problems

• array<int,7> s; // fixed-sized array

– Example: Generalized constant expressions (think ROM)

constexpr int abs(int i) { return (0<=i) ? i : -i; } // can be constant expression

struct Point {
int x, y;
constexpr Point(int xx, int yy) : x{xx}, y{yy} { } // “literal type”

};

constexpr Point p = {1,2}; // must be evaluated at compile time: ok
constexpr Point p2 = {p.x,abs(x)}; // ok?: is x is a constant expression?

Stroustrup - Fermilab'10 24

Make only changes that change
the way people think

• Think/remember:
– Object-oriented programming
– Generic programming
– Concurrency
– …

• But, most people prefer to fiddle with details
– So there are dozens of small improvements

• All useful somewhere
• long long, static_assert, raw literals, thread_local, unicode types, …

– Example: A null pointer keyword
void f(int);
void f(char*);
f(0); // call f(int);
f(nullptr); // call f(char*);

Stroustrup - Fermilab'10 25

Fit into the real world
• Example: Existing compilers and tools must evolve

– Simple complete replacement is impossible
– Tool chains are huge and expensive
– There are more tools than you can imagine
– C++ exists on many platforms

• So the tool chain problems occur N times
– (for each of M tools)

• Example: Education
– Teachers, courses, and textbooks

• Often mired in 1970s thinking (“C is the perfect language”)
• Often mired in 1980s thinking (“OOP: Rah! Rah!! Rah!!!”)

– “We” haven’t completely caught up with C++98!
• “legacy code breeds more legacy code”

Stroustrup - Fermilab'10 26

Areas of language change
• Machine model and concurrency Model

– Threads library (std::thread)
– Atomics ABI
– Thread-local storage (thread_local)
– Asynchronous message buffer (std::future)

• Support for generic programming
– (no concepts )
– uniform initialization
– auto, decltype, lambdas, template aliases, move semantics, variadic

templates, range-for, …
• Etc.

– static_assert
– improved enums
– long long, C99 character types, etc.
– … Stroustrup - Fermilab'10 27

Standard Library Improvements
• New containers

– Hash Tables (unordered_map, etc.)
– Singly-linked list (forward_list)
– Fixed-sized array (array)

• Container improvements
– Move semantics (e.g. push_back)
– Initializer-list constructors
– Emplace operations
– Scoped allocators

• More algorithms (just a few)
• More and better utilities

– bind(), function, …
• Concurrency support

– thread, mutex, lock, …
– future, async, …
– Atomic types

• Garbage collection ABI
Stroustrup - Fermilab'10 28

http://std.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1429.htm�

Standard Library Improvements
• Regular Expressions (regex)
• General-purpose Smart Pointers (unique_ptr, shared_ptr, …)
• Extensible Random Number Facility
• Enhanced Binder and function wrapper (bind and function)
• Mathematical Special Functions
• Tuple Types (tuple)
• Type Traits (lots)

Stroustrup - Fermilab'10 29

http://std.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1432.htm�
http://std.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1452.html�
http://std.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1453.html�
http://std.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1456.html�
http://std.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1422.html�
http://std.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1429.htm�

What is C++?

A multi-paradigm
programming language

It’s C!

A hybrid language

An object-oriented
programming language

Template
meta-programming!

A random collection
of features

Embedded systems
programming language

Low level!

Buffer
overflows

Too big!

Supports
generic programming

Stroustrup - Fermilab'10 30

C++
Key strength:

Building
software
infrastructures
and resource-
constrained
applications

A light-weight abstraction
programming language

Stroustrup - Fermilab'10 31

What does “light-weight abstraction” mean?

• The design of programs focused on the design,
implementation, and use of abstractions
– Often abstractions are organized into libraries

• So this style of development has been called “library-oriented”

• C++ emphasis
– Flexible static type system
– Small abstractions
– Performance (in time and space)
– Ability to work close to the hardware

Stroustrup - Fermilab'10 32

Case Study: Concurrency support
• Memory model

– To guarantee our usual assumptions

• Support for concurrent systems programming
– Atomic types for implementing concurrency support features

• Lock-free programming
– “Here be dragons”

– Thread, mutex, and lock
• RAII for locking

• A single higher-level model
– async() and futures

Stroustrup - Fermilab'10 33

Case study: Concurrency
• What we want

– Ease of programming
• Writing correct concurrent code is hard

– Portability
– Uncompromising performance
– System level interoperability

• We can’t get everything
– No one concurrency model is best for everything
– De facto: we can’t get all that much
– “C++ is a systems programming language”

• (among other things) implies serious constraints

Stroustrup - Fermilab'10 34

Concurrency: std::thread
#include<thread>

void f() { std::cout << "Hello "; } // function

struct F { // function object
void operator()() { std::cout << "parallel world "; }

};

int main()
{

std::thread t1{f}; // f() executes in separate thread
std::thread t2{F()}; // F()() executes in separate thread

t1.join(); // wait for t1
t2.join(); // wait for t2

} // spot the bug Stroustrup - Fermilab'10 35

Thread – pass arguments
• Use bind() or variadic constructor

void f(vector<double>&);

struct F {
vector<double>& v;
F(vector<double>& vv) :v{vv} { }
void operator()();

};

int main()
{

std::thread t1{std::bind(f,some_vec)}; // f(some_vec)
std::thread t2{f,some_vec}; // f(some_vec)
t1.join(); t2.join();

} Stroustrup - Fermilab'10 36

Mutual exclusion: std::mutex
• A mutex is a primitive object use for controlling access in a

multi-threaded system.
• A mutex is a shared object (a resource)
• Simplest use:

std::mutex m;
int sh; // shared data
// ...
m.lock();

// manipulate shared data:
sh+=1;

m.unlock();

Stroustrup - Fermilab'10 37

Mutex – try_lock()

• Don’t wait unnecessarily
std::mutex m;
int sh; // shared data
// ...
if (m.try_lock()) { // manipulate shared data:

sh+=1;
m.unlock();

else {
// maybe do something else

}

Stroustrup - Fermilab'10 38

RAII for mutexes: std::lock
• A lock represents local ownership of a resource (the mutex)

std::mutex m;
int sh; // shared data

void f()
{

// ...
std::unique_lock<mutex> lck(m); // grab (acquire) the mutex
// manipulate shared data:
sh+=1;

} // implicitly release the mutex

Stroustrup - Fermilab'10 39

Potential deadlock

• Unstructured use of multiple locks is hazardous:
std::mutex m1;
std::mutex m2;
int sh1; // shared data
int sh2;
// ...
void f() {

// ...
std::unique_lock<mutex> lck1(m1);
std::unique_lock<mutex> lck2(m2);
// manipulate shared data:
sh1+=sh2;

} Stroustrup - Fermilab'10 40

RAII for mutexes: std::lock
• We can safely use several locks

void f() {
// ...
std::unique_lock<mtex> lck1(m1,std::defer_lock); // don’t yet acquire
std::unique_lock<mutex> lck2(m2,std::defer_lock);
std::unique_lock<mutex> lck3(m3,std::defer_lock);
// …
lock(lck1,lck2,lck3);
// manipulate shared data

} // implicitly release the mutexes

Stroustrup - Fermilab'10 41

Future and promise

• future+promise provides a simple way of passing a
value from one thread to another
– No explicit synchronization
– Exceptions can be transmitted between threads

Stroustrup - Fermilab'10

future promise

result

get() set()

42

Future and promise
• Get an X from a future<X>:

X v = f.get();// if necessary wait for the value to get

• Put an X to a promise<X>:
try {

X res;
// compute a value for res
p.set_value(res);

} catch (...) {
// oops: couldn't compute res
p.set_exception(std::current_exception());

}

Stroustrup - Fermilab'10 43

async()
• Simple launcher (using the variadic template interface)

double accum(double* b, double* e, double init);

double comp(vector<double>& v) // spawn many tasks if v is large enough
{

if (v.size()<10000) return accum(&v[0], &v[0]+v.size(), 0.0);

auto f0 = async(accum, &v[0], &v[v.size()/4], 0.0);
auto f1 = async(accum, &v[v.size()/4], &v[v.size()/2], 0.0);
auto f2 = async(accum, &v[v.size()/2], &v[v.size()*3/4], 0.0);
auto f3 = async(accum, &v[v.size()*3/4], &v[0]+v.size(), 0.0);

return f0.get()+f1.get()+f2.get()+f3.get();
}

Stroustrup - Fermilab'10 44

Stroustrup - Fermilab'10

Thanks!

• C and Simula
– Brian Kernighan
– Doug McIlroy
– Kristen Nygaard
– Dennis Ritchie
– …

• ISO C++ standards committee
– Steve Clamage
– Francis Glassborow
– Andrew Koenig
– Tom Plum
– Herb Sutter
– …

• C++ compiler, tools, and library builders
– Beman Dawes
– David Vandevoorde
– …

• Application builders
45

Stroustrup - Fermilab'10

More information
• My home pages

– My HOPL-II and HOPL-III papers
– C++0x FAQ
– Papers, FAQs, libraries, applications, compilers, …

• Search for “Bjarne” or “Stroustrup”
• “What is C++0x ?” paper

• The ISO C++ standard committee’s site:
– All documents from 1994 onwards

• Search for “WG21”
• The Design and Evolution of C++ (Addison Wesley 1994)
• The Computer History Museum

– Software preservation project’s C++ pages
• Early compilers and documentation, etc.

– http://www.softwarepreservation.org/projects/c_plus_plus/
– Search for “C++ Historical Sources Archive”

46

	Introducing C++0x
	Overview
	Programming languages
	Programming Languages
	Ideals
	C with Classes –1980
	C++ applications
	C++ Applications
	C++ Applications
	C++ ISO Standardization
	Overall goals for C++0x
	C++0x
	Rules of thumb / Ideals
	Maintain stability and compatibility
	Support both experts and novices
	Uniform initialization
	Uniform initialization
	Uniform initialization
	Prefer libraries to language extensions
	Prefer generality to specialization
	Move semantics
	Increase type safety
	Improve performance and the ability to work directly with hardware
	Make only changes that change�the way people think
	Fit into the real world
	Areas of language change
	Standard Library Improvements
	Standard Library Improvements
	What is C++?
	C++
	What does “light-weight abstraction” mean?
	Case Study: Concurrency support
	Case study: Concurrency
	Concurrency: std::thread
	Thread – pass arguments
	Mutual exclusion: std::mutex
	Mutex – try_lock()
	RAII for mutexes: std::lock
	Potential deadlock
	RAII for mutexes: std::lock
	Future and promise
	Future and promise
	async()
	Thanks!
	More information

