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Overview
• Aims, ideals, and history
• C++
• Design rules for C++0x

– With tiny examples
• A case study

– concurrency
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Programming languages
A programming language exists to help people express ideas

• Programming language features 
exist to serve design and 
programming techniques

• The primary value of a 
programming language is in the 
applications written in it

• The quest for better languages has been long and must continue
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Programming Languages

Assembler

Cobol

Fortran

C++

C

Simula

C++0x

General-purpose abstraction

Domain-specific 
abstraction

Direct mapping to 
hardware

Java

C#BCPL
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Ideals
• Work at the highest feasible level of abstraction

– More general, correct, comprehensible, and maintainable code

• Represent
– concepts directly in code
– independent concepts independently in code

• Represent relationships among concepts directly
– For example

• Hierarchical relationships (object-oriented programming)
• Parametric relationships (generic programming)

• Combine concepts
– freely
– but only when needed and it makes sense
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C with Classes –1980
• General abstraction mechanisms to cope with complexity

– From Simula
• General close-to-hardware machine model for efficiency

– From C

• Became C++ in 1984
– Commercial release 1985

• Non-commercial source license: $75
– ISO standard 1998
– C++0x Final Draft Standard 2010

• 2nd ISO standard 200x (‘x’ is hex )
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C++ applications
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C++ Applications

• www.research.att.com/~bs/applications.html
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C++ Applications

www.lextrait.com/vincent/implementations.html
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C++ ISO Standardization
• Slow, bureaucratic,

democratic, formal process
– “the worst way, except for all the rest” 

• (apologies to W. Churchill)

• About 22 nations
(5 to 12 at a meeting)

• Membership have varied
– 100 to 200+

• 200+ members currently
– 40 to 100 at a meeting

• ~60 currently

• Most members work in industry
• Most members are volunteers

– Even many of the company representatives
• Most major platform, compiler, and library vendors are represented

– E.g., IBM, Intel, Microsoft, Sun
• End users are underrepresented
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Overall goals for C++0x

• Make C++ a better language 
for systems programming and 
library building
– Rather than providing specialized 

facilities for a particular sub-
community (e.g. numeric 
computation or Windows-style 
application development)

– Build directly on C++’s contributions 
to systems programming

• Make C++ easier to teach and learn
– Through increased uniformity, stronger guarantees, and 

facilities supportive of novices (there will always be more 
novices than experts)
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C++0x

• ‘x’ may be hex, but C++0x is not science fiction
– Every feature is implemented somewhere, e.g.,

• GCC 4.6:  Rvalues, Variadic templates, Initializer lists, Static 
assertions, auto-typed variables, New function declarator syntax, 
Lambdas, Right angle brackets, Extern templates, Strongly-typed 
enums, Delegating constructors (patch), Raw string literals, Defaulted 
and deleted functions, Inline namespaces, Local and unnamed types 
as template arguments

• Microsoft 2010: auto, lambdas, concurrency
– Standard library components are shipping widely

• E.g. GCC, Microsoft, Boost
– The last design points have been settled

• The committee is processing formal requests from National Standards 
Bodies
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Rules of thumb / Ideals
• Integrating features to work in combination is the key

– And the most work
– The whole is much more than the simple sum of its part

• Individual features must serve articulated ideals
– Maintain stability and compatibility
– Prefer libraries to language extensions
– Prefer generality to specialization
– Support both experts and novices
– Increase type safety
– Improve performance and ability to work directly with hardware
– Make only changes that change the way people think
– Fit into the real world
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Maintain stability and compatibility
• “Don’t break my code!”

– There are billions of lines of code “out there”
– There are millions of C++ programmers “out there”

• “Absolutely no incompatibilities” leads to ugliness
– We introduce new keywords as needed: auto (recycled), decltype, 

constexpr, thread_local, nullptr
– We try hard to avoid choosing keywords that clash with existing code
– Example of incompatibility:

static_assert(4<=sizeof(int),"error: small ints");
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Support both experts and novices
• Example: minor syntax cleanup

vector<list<int>> v; // note the “missing space”

• Example: deduced type:
auto x = v.begin(); // x becomes a vector<list<int>>::iterator

• Example: simplified iteration
for (auto x : v) cout << x <<'\n';

• Note: Experts don’t easily appreciate the needs of novices
– Example of what we couldn’t get just now

string s = "12.3";
double x = lexical_cast<double>(s); // extract value from string
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Uniform initialization
• You can use {}-initialization for all types in all contexts

int a[] = { 1,2,3 };
vector<int> v = { 1,2,3};

vector<string> geek_heros = {
"Dahl", "Kernighan", "McIlroy", "Nygaard ", "Ritchie", "Stepanov"

};

std::thread t{}; // default initialization
// remember “thread t();” is a function declaration

complex<double> z{1,2}; // invokes constructor
struct S { double x, y; };
S s {1,2};  // no constructor (just initialize members)
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Uniform initialization
• {}-initialization X{v} yields the same value of X in every context

X x{a}; 
X* p = new X{a};
z = X{a}; // use as cast

void f(X);
f({a}); // function argument (of type X)

X g()
{

// …
return {a}; // function return value (function returning X)

}

Y::Y(a) : X{a}, m{a} { /* … */ }; // base class and member initializers
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Uniform initialization
• {}-initialization does not narrow

int x1 = 7.9; // x1 becomes 7
int x2 {7.9}; // error: narrowing conversion

Table phone_numbers = {
{ "Donald Duck", 2015551234 },
{ "Mike Doonesbury", 9794566089 },
{ "Kell Dewclaw", 1123581321 }

};
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Prefer libraries to language extensions
• Libraries deliver more functionality
• Libraries are immediately useful
• Problem: Enthusiasts prefer language features

– see library as 2nd best

• Example: New library components
– std::thread, std::future, …
– std::unordered_map, std::regex, …

• Threads ABI; not thread built-in type, not built-in associative array, …

• Example: Mixed language/library extension
– The new for works for every type with std::begin() and std::end()
– The new initializer lists are based on std::initializer_list<T>

vector<string> v = { "Nygaard", "Ritchie" };
for (auto& x : {y,z,ae,ao,aa}) cout << x << '\n';
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Prefer generality to specialization
• Example: Improvements to abstraction mechanisms

– Inherited constructor
template<class T> class Vector : std::vector<T> {

using vector::vector<T>; // inherit all constructors
// …

};

– Move semantics supported by rvalue references
template<class T>  class vector {

// …
vector(vector&& a); // move constructor

// don’t copy: grab a’s representation
};

• Problem: people love small isolated features
Stroustrup - Fermilab'10 21



Move semantics
• Often we don’t want two copies, we just want to move a value

vector<int> make_test_sequence(int n)
{

vector<int> res;
for (int i=0; i<n; ++i) res.push_back(rand_int());
return res; // move, not copy

}

vector<int> seq = make_test_sequence(1000000); // no copies

• New idiom for arithmetic operations:
– Matrix operator+(const Matrix&, const Matrix&);
– a = b+c+d+e; // no copies

Stroustrup - Fermilab'10

Not a reference
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Increase type safety
• Approximate the unachievable ideal

– Example: Strongly-typed enumerations
enum class Color { red, blue, green };
int x = Color::red; // error: no Color->int conversion
Color y = 7; // error: no int->Color conversion
Color z = red; // error: red not in scope
Color c = Color::red; // fine

– Example: Support for general resource management
• std::unique_ptr (for ownership)
• std::shared_ptr (for sharing)
• Garbage collection ABI
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Improve performance and the ability to work 
directly with hardware

• Embedded systems programming is very important
– Example: address array/pointer problems

• array<int,7> s; // fixed-sized array

– Example: Generalized constant expressions (think ROM)

constexpr int abs(int i) { return (0<=i) ? i : -i; } // can be constant expression

struct Point {
int x, y;
constexpr Point(int xx, int yy) : x{xx}, y{yy} { } // “literal type”

};

constexpr Point p = {1,2}; // must be evaluated at compile time: ok
constexpr Point p2 = {p.x,abs(x)};    // ok?: is x is a constant expression?
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Make only changes that change
the way people think

• Think/remember:
– Object-oriented programming
– Generic programming
– Concurrency
– …

• But, most people prefer to fiddle with details
– So there are dozens of small improvements

• All useful somewhere
• long long, static_assert, raw literals, thread_local, unicode types, …

– Example: A null pointer keyword
void f(int);
void f(char*);
f(0); // call f(int);
f(nullptr); // call f(char*);
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Fit into the real world
• Example: Existing compilers and tools must evolve

– Simple complete replacement is impossible
– Tool chains are huge and expensive
– There are more tools than you can imagine
– C++ exists on many platforms

• So the tool chain problems occur N times
– (for each of M tools)

• Example: Education
– Teachers, courses, and textbooks

• Often mired in 1970s thinking (“C is the perfect language”)
• Often mired in 1980s thinking (“OOP: Rah! Rah!! Rah!!!”) 

– “We” haven’t completely caught up with C++98!
• “legacy code breeds more legacy code”

Stroustrup - Fermilab'10 26



Areas of language change
• Machine model and concurrency Model

– Threads library (std::thread)
– Atomics ABI
– Thread-local storage (thread_local)
– Asynchronous message buffer (std::future)

• Support for generic programming
– (no concepts )
– uniform initialization
– auto, decltype, lambdas, template aliases, move semantics, variadic 

templates, range-for, …
• Etc.

– static_assert
– improved enums
– long long, C99 character types, etc.
– … Stroustrup - Fermilab'10 27



Standard Library Improvements
• New containers

– Hash Tables (unordered_map, etc.)
– Singly-linked list (forward_list)
– Fixed-sized array (array)

• Container improvements
– Move semantics (e.g. push_back)
– Initializer-list constructors
– Emplace operations
– Scoped allocators

• More algorithms (just a few)
• More and better utilities

– bind(), function, …
• Concurrency support

– thread, mutex, lock,  …
– future, async, …
– Atomic types

• Garbage collection ABI
Stroustrup - Fermilab'10 28
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Standard Library Improvements
• Regular Expressions (regex)
• General-purpose Smart Pointers (unique_ptr, shared_ptr, …)
• Extensible Random Number Facility
• Enhanced Binder and function wrapper (bind and function)
• Mathematical Special Functions
• Tuple Types (tuple)
• Type Traits (lots)
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What is C++?

A multi-paradigm 
programming language

It’s C!

A hybrid language

An object-oriented 
programming language

Template
meta-programming!

A random collection 
of features

Embedded systems 
programming language

Low level!

Buffer 
overflows

Too big!

Supports
generic programming
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C++
Key strength:

Building 
software 
infrastructures 
and resource-
constrained 
applications

A light-weight abstraction
programming language
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What does “light-weight abstraction” mean?

• The design of programs focused on the design, 
implementation, and use of abstractions
– Often abstractions are organized into libraries

• So this style of development has been called “library-oriented”

• C++ emphasis
– Flexible static type system
– Small abstractions
– Performance (in time and space)
– Ability to work close to the hardware
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Case Study: Concurrency support
• Memory model

– To guarantee our usual assumptions

• Support for concurrent systems programming
– Atomic types for implementing concurrency support features

• Lock-free programming 
– “Here be dragons”

– Thread, mutex, and lock
• RAII for locking

• A single higher-level model
– async() and futures
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Case study: Concurrency
• What we want

– Ease of programming
• Writing correct concurrent code is hard

– Portability 
– Uncompromising performance
– System level interoperability

• We can’t get everything
– No one concurrency model is best for everything
– De facto: we can’t get all that much
– “C++ is a systems programming language”

• (among other things) implies serious constraints
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Concurrency: std::thread
#include<thread>

void f() { std::cout << "Hello "; } // function

struct F { // function object
void operator()() { std::cout << "parallel world "; }

};

int main()
{

std::thread t1{f}; // f() executes in separate thread
std::thread t2{F()}; // F()() executes in separate thread

t1.join(); // wait for t1
t2.join(); // wait for t2

}  // spot the bug Stroustrup - Fermilab'10 35



Thread – pass arguments
• Use bind() or variadic constructor

void f(vector<double>&);

struct F {
vector<double>& v;
F(vector<double>& vv) :v{vv} { }
void operator()();

}; 

int main()
{

std::thread t1{std::bind(f,some_vec)}; // f(some_vec)
std::thread t2{f,some_vec}; // f(some_vec) 
t1.join(); t2.join(); 

} Stroustrup - Fermilab'10 36



Mutual exclusion: std::mutex
• A mutex is a primitive object use for controlling access in a 

multi-threaded system.
• A mutex is a shared object (a resource)
• Simplest use:

std::mutex m;
int sh; // shared data
// ...
m.lock();

// manipulate shared data:
sh+=1;

m.unlock(); 
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Mutex – try_lock()

• Don’t wait unnecessarily
std::mutex m;
int sh; // shared data
// ...
if (m.try_lock()) { // manipulate shared data:

sh+=1;
m.unlock();

else {
// maybe do something else

}
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RAII for mutexes: std::lock
• A lock represents local ownership of a resource (the mutex) 

std::mutex m;
int sh; // shared data

void f()
{

// ...
std::unique_lock<mutex> lck(m); // grab (acquire) the mutex
// manipulate shared data:
sh+=1;

} // implicitly release the mutex
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Potential deadlock

• Unstructured use of multiple locks is hazardous:
std::mutex m1;
std::mutex m2;
int sh1; // shared data
int sh2;
// ...
void f() {

// ... 
std::unique_lock<mutex> lck1(m1);
std::unique_lock<mutex> lck2(m2);
// manipulate shared data:
sh1+=sh2;

} Stroustrup - Fermilab'10 40



RAII for mutexes: std::lock
• We can safely use several locks

void f() {
// ...
std::unique_lock<mtex> lck1(m1,std::defer_lock); // don’t yet acquire
std::unique_lock<mutex> lck2(m2,std::defer_lock);
std::unique_lock<mutex> lck3(m3,std::defer_lock);
// …
lock(lck1,lck2,lck3);
// manipulate shared data

} // implicitly release the mutexes
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Future and promise

• future+promise provides a simple way of passing a 
value from one thread to another
– No explicit synchronization
– Exceptions can be transmitted between threads

Stroustrup - Fermilab'10

future promise

result

get() set()
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Future and promise
• Get an X from a future<X>:

X v = f.get();// if necessary wait for the value to get

• Put an X to a promise<X>:
try {

X res;
// compute a value for res
p.set_value(res);

} catch (...) {
// oops: couldn't compute res
p.set_exception(std::current_exception());

}
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async()
• Simple launcher (using the variadic template interface)

double accum(double* b, double* e, double init);

double comp(vector<double>& v) // spawn many tasks if v is large enough
{

if (v.size()<10000) return accum(&v[0], &v[0]+v.size(), 0.0);

auto f0 = async(accum, &v[0], &v[v.size()/4], 0.0);
auto f1 = async(accum, &v[v.size()/4], &v[v.size()/2], 0.0);
auto f2 = async(accum, &v[v.size()/2], &v[v.size()*3/4], 0.0);
auto f3 = async(accum, &v[v.size()*3/4], &v[0]+v.size(), 0.0);

return f0.get()+f1.get()+f2.get()+f3.get();
}

Stroustrup - Fermilab'10 44



Stroustrup - Fermilab'10

Thanks!

• C and Simula
– Brian Kernighan
– Doug McIlroy
– Kristen Nygaard
– Dennis Ritchie
– …

• ISO C++ standards committee
– Steve Clamage
– Francis Glassborow
– Andrew Koenig
– Tom Plum
– Herb Sutter
– …

• C++ compiler, tools, and library builders
– Beman Dawes
– David Vandevoorde
– …

• Application builders
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More information
• My home pages

– My HOPL-II and HOPL-III papers
– C++0x FAQ
– Papers, FAQs, libraries, applications, compilers, …

• Search for “Bjarne” or “Stroustrup”
• “What is C++0x ?” paper

• The ISO C++ standard committee’s site:
– All documents from 1994 onwards

• Search for “WG21”
• The Design and Evolution of C++ (Addison Wesley 1994)
• The Computer History Museum

– Software preservation project’s C++ pages
• Early compilers and documentation, etc.

– http://www.softwarepreservation.org/projects/c_plus_plus/
– Search for “C++ Historical Sources Archive” 
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