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Something Funny Happened on the Way to the 21st Century

ν Flavor Oscillations

Neutrino oscillation experiments have revealed that neutrinos change
flavor after propagating a finite distance. The rate of change depends on
the neutrino energy Eν and the baseline L. The evidence is overwhelming.

• νµ → ντ and ν̄µ → ν̄τ — atmospheric and accelerator experiments;

• νe → νµ,τ — solar experiments;

• ν̄e → ν̄other — reactor experiments;

• νµ → νother and ν̄µ → ν̄other— atmospheric and accelerator expts;

• νµ → νe — accelerator experiments.

The simplest and only satisfactory explanation of all these data is that
neutrinos have distinct masses, and mix.
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NuFIT 2.0 (2014)

Normal Ordering (Δχ2 = 0.97) Inverted Ordering (best fit) Any Ordering

bfp ±1σ 3σ range bfp ±1σ 3σ range 3σ range

sin2 θ12 0.304+0.013
−0.012 0.270 → 0.344 0.304+0.013

−0.012 0.270 → 0.344 0.270 → 0.344

θ12/
◦ 33.48+0.78

−0.75 31.29 → 35.91 33.48+0.78
−0.75 31.29 → 35.91 31.29 → 35.91

sin2 θ23 0.452+0.052
−0.028 0.382 → 0.643 0.579+0.025

−0.037 0.389 → 0.644 0.385 → 0.644

θ23/
◦ 42.3+3.0

−1.6 38.2 → 53.3 49.5+1.5
−2.2 38.6 → 53.3 38.3 → 53.3

sin2 θ13 0.0218+0.0010
−0.0010 0.0186 → 0.0250 0.0219+0.0011

−0.0010 0.0188 → 0.0251 0.0188 → 0.0251

θ13/
◦ 8.50+0.20

−0.21 7.85 → 9.10 8.51+0.20
−0.21 7.87 → 9.11 7.87 → 9.11

δCP/
◦ 306+39

−70 0 → 360 254+63
−62 0 → 360 0 → 360

Δm2
21

10−5 eV2 7.50+0.19
−0.17 7.02 → 8.09 7.50+0.19

−0.17 7.02 → 8.09 7.02 → 8.09

Δm2
3�

10−3 eV2 +2.457+0.047
−0.047 +2.317 → +2.607 −2.449+0.048

−0.047 −2.590 → −2.307

�
+2.325 → +2.599
−2.590 → −2.307

�

Three Flavor Mixing Hypothesis Fits All∗ Data Really Well.

∗Modulo a handful of 2σ to 3σ anomalies.

[Gonzalez-Garcia, Maltoni, Schwetz, 1409.5439, http://www.nu-fit.org]
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NEUTRINOS

HAVE MASS
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[albeit very tiny ones...]

So What?
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NEUTRINOS
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[albeit very tiny ones...]

So What?

⇓
NEW PHYSICS
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Neutrino Masses: Only∗ “Palpable” Evidence
of Physics Beyond the Standard Model

The SM we all learned in school predicts that neutrinos are strictly
massless. Hence, massive neutrinos imply that the the SM is incomplete
and needs to be replaced/modified.

Furthermore, the SM has to be replaced by something qualitatively
different.

——————
∗ There is only a handful of questions our model for fundamental physics cannot

explain (my personal list. Feel free to complain).

• What is the physics behind electroweak symmetry breaking? (Higgs X).

• What is the dark matter? (not in SM).

• Why is there more matter than antimatter in the Universe? (not in SM).

• Why does the Universe appear to be accelerating? Why does it appear that the

Universe underwent rapid acceleration in the past? (not in SM).
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What is the New Standard Model? [νSM]

The short answer is – WE DON’T KNOW. Not enough available info!

m
Equivalently, there are several completely different ways of addressing
neutrino masses. The key issue is to understand what else the νSM
candidates can do. [are they falsifiable?, are they “simple”?, do they
address other outstanding problems in physics?, etc]

We need more experimental input.
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Neutrino Masses, EWSB, and a New Mass Scale of Nature

The LHC has revealed that the minimum SM prescription for electroweak

symmetry breaking — the one Higgs double model — is at least approximately

correct. What does that have to do with neutrinos?

The tiny neutrino masses point to three different possibilities.

1. Neutrinos talk to the Higgs boson very, very weakly (Dirac neutrinos);

2. Neutrinos talk to a different Higgs boson – there is a new source of

electroweak symmetry breaking! (Majorana neutrinos);

3. Neutrino masses are small because there is another source of mass out

there — a new energy scale indirectly responsible for the tiny neutrino

masses, a la the seesaw mechanism (Majorana neutrinos).

Searches for 0νββ help tell (1) from (2) and (3), the LHC, charged-lepton flavor

violation, etc may provide more information.
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Fork on the Road: Are Neutrinos Majorana or Dirac Fermions?
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Why Don’t We Know the Answer?

If neutrino masses were indeed zero, this is a nonquestion: there is no
distinction between a massless Dirac and Majorana fermion.

Processes that are proportional to the Majorana nature of the neutrino
vanish in the limit mν → 0. Since neutrinos masses are very small, the
probability for these to happen is very, very small: A ∝ mν/E.

The “smoking gun” signature is the observation of LEPTON NUMBER
violation. This is easy to understand: Majorana neutrinos are their own
antiparticles and, therefore, cannot carry any quantum numbers —
including lepton number.
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Search for the Violation of Lepton Number (or B − L)

10−4 10−3 10−2 10−1 1
lightest neutrino mass in eV

10−4

10−3

10−2

10−1

1

|m
ee

| i
n

eV

90% CL (1 dof)

∆m23
2  > 0

disfavoured by 0ν2β

disfavoured
by

cosm
ology

∆m23
2  < 0

Helicity Suppressed Amplitude ∝ mee
E

Observable: mee ≡
∑
i U

2
eimi
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Decay: Z → (Z + 2)e−e− ×
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We Will Still Need More Help . . .
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νSM – One Path

SM as an effective field theory – non-renormalizable operators

LνSM ⊃ −yij L
iHLjH

2Λ
+O

`
1

Λ2

´
+H.c.

There is only one dimension five operator [Weinberg, 1979]. If Λ� 1 TeV, it

leads to only one observable consequence...

after EWSB LνSM ⊃ mij
2
νiνj ; mij = yij

v2

Λ
.

• Neutrino masses are small: Λ� v → mν � mf (f = e, µ, u, d, etc)

• Neutrinos are Majorana fermions – Lepton number is violated!

• νSM effective theory – not valid for energies above at most Λ.

• What is Λ? First naive guess is that Λ is the Planck scale – does not work.

Data require Λ ∼ 1014 GeV (related to GUT scale?) [note ymax ≡ 1]

What else is this “good for”? Depends on the ultraviolet completion!
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Example: the Seesaw Mechanism

A simplea, renormalizable Lagrangian that allows for neutrino masses is

Lν = Lold − λαiLαHN i −
3∑
i=1

Mi

2
N iN i +H.c.,

where Ni (i = 1, 2, 3, for concreteness) are SM gauge singlet fermions. Lν
is the most general, renormalizable Lagrangian consistent with the SM
gauge group and particle content, plus the addition of the Ni fields.

After electroweak symmetry breaking, Lν describes, besides all other SM
degrees of freedom, six Majorana fermions: six neutrinos.

aOnly requires the introduction of three fermionic degrees of freedom, no new inter-

actions or symmetries.
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What We Know About M :

• M = 0: the six neutrinos “fuse” into three Dirac states. Neutrino mass

matrix given by µαi ≡ λαiv.

The symmetry of Lν is enhanced: U(1)B−L is an exact global symmetry of

the Lagrangian if all Mi vanish. Small Mi values are ’tHooft natural.

• M � µ: the six neutrinos split up into three mostly active, light ones, and

three, mostly sterile, heavy ones. The light neutrino mass matrix is given

by mαβ =
P
i µαiM

−1
i µβi [m ∝ 1/Λ ⇒ Λ = M/µ2].

This the seesaw mechanism. Neutrinos are Majorana fermions. Lepton

number is not a good symmetry of Lν , even though L-violating effects are

hard to come by.

• M ∼ µ: six states have similar masses. Active–sterile mixing is very large.

This scenario is (generically) ruled out by active neutrino data

(atmospheric, solar, KamLAND, K2K, etc).

• M � µ: neutrinos are quasi-Dirac fermions. Active–sterile mixing is

maximal, but new oscillation lengths are very long (cf. 1 A.U.).
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Accommodating Small Neutrino Masses

If µ = λv �M , below the mass scale M ,

L5 =
LHLH

Λ
.

Neutrino masses are small if Λ� 〈H〉. Data require Λ ∼ 1014 GeV.

In the case of the seesaw,

Λ ∼ M

λ2
,

so neutrino masses are small if either

• they are generated by physics at a very high energy scale M � v

(high-energy seesaw); or

• they arise out of a very weak coupling between the SM and a new, hidden

sector (low-energy seesaw); or

• cancellations among different contributions render neutrino masses

accidentally small (“fine-tuning”).
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Piecing the Neutrino Mass Puzzle

Understanding the origin of neutrino masses and exploring the new physics in the

lepton sector will require unique theoretical and experimental efforts, including . . .

• understanding the fate of lepton-number. Neutrinoless double beta decay!

• a comprehensive long baseline neutrino program, towards precision oscillation

physics.

• other probes of neutrino properties, including neutrino scattering.

• precision studies of charged-lepton properties (g − 2, edm), and searches for rare

processes (µ→ e-conversion the best bet at the moment).

• collider experiments. The LHC and beyond may end up revealing the new physics

behind small neutrino masses.

• cosmic surveys. Neutrino properties affect, in a significant way, the history of the

universe. Will we learn about neutrinos from cosmology, or about cosmology from

neutrinos?

• searches for baryon-number violating processes.
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HOWEVER. . .

We have only ever objectively “seen” neutrino masses in long-baseline
oscillation experiments. It is the clearest way forward!

Does this mean we will reveal the origin of neutrino masses with
oscillation experiments? We don’t know, and we won’t know until we try!
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New Neutrino Oscillation Experiments: Missing Oscillation Parameters

(∆m2)sol

(∆m2)sol

(∆m2)atm

(∆m2)atm

νe

νµ

ντ

(m1)
2

(m2)
2

(m3)
2

(m1)
2

(m2)
2

(m3)
2

normal hierarchy inverted hierarchy

• What is the νe component of ν3?
(θ13 6= 0!)

• Is CP-invariance violated in neutrino
oscillations? (δ 6= 0, π?)

• Is ν3 mostly νµ or ντ? (θ23 > π/4,
θ23 < π/4, or θ23 = π/4?)

• What is the neutrino mass hierarchy?
(∆m2

13 > 0?)

⇒ All of the above can “only” be

addressed with new neutrino

oscillation experiments

Ultimate Goal: Not Measure Parameters but Test the Formalism (Over-Constrain Parameter Space)
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We need to do this in

the lepton sector!

What we ultimately want to achieve:
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0BB@
νe

νµ

ντ

1CCA =

0BB@
Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

1CCA
0BB@

ν1

ν2

ν3

1CCA

What we have really measured (very roughly):

• Two mass-squared differences, at several percent level – many probes;

• |Ue2|2 – solar data;

• |Uµ2|2 + |Uτ2|2 – solar data;

• |Ue2|2|Ue1|2 – KamLAND;

• |Uµ3|2(1− |Uµ3|2) – atmospheric data, K2K, MINOS;

• |Ue3|2(1− |Ue3|2) – Double Chooz, Daya Bay, RENO;

• |Ue3|2|Uµ3|2 (upper bound → evidence) – MINOS, T2K.

We still have a ways to go!
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Golden Opportunity to Understand Matter versus Antimatter?

The SM with massive Majorana neutrinos accommodates five irreducible
CP-invariance violating phases.

• One is the phase in the CKM phase. We have measured it, it is large,
and we don’t understand its value. At all.

• One is θQCD term (θGG̃). We don’t know its value but it is only
constrained to be very small. We don’t know why (there are some
good ideas, however).

• Three are in the neutrino sector. One can be measured via neutrino
oscillations. 50% increase on the amount of information.

We don’t know much about CP-invariance violation. Is it really fair to
presume that CP-invariance is generically violated in the neutrino sector
solely based on the fact that it is violated in the quark sector? Why?
Cautionary tale: “Mixing angles are small”
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CP-invariance Violation in Neutrino Oscillations

The most promising approach to studying CP-violation in the leptonic
sector seems to be to compare P (νµ → νe) versus P (ν̄µ → ν̄e).

The amplitude for νµ → νe transitions can be written as

Aµe = U∗
e2Uµ2

(
ei∆12 − 1

)
+ U∗

e3Uµ3

(
ei∆13 − 1

)
where ∆1i = ∆m2

1iL
2E , i = 2, 3.

The amplitude for the CP-conjugate process can be written as

Āµe = Ue2U
∗
µ2

(
ei∆12 − 1

)
+ Ue3U

∗
µ3

(
ei∆13 − 1

)
.

[I assume the unitarity of U , Ue1U
∗
µ1 = −Ue2U∗µ2 − Ue3U∗µ3]
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In general, |A|2 6= |Ā|2 (CP-invariance violated) as long as:

• Nontrivial “Weak” Phases: arg(U∗
eiUµi) → δ 6= 0, π;

• Nontrivial “Strong” Phases: ∆12, ∆13 → L 6= 0;

• Because of Unitarity, we need all |Uαi| 6= 0 → three generations.

All of these can be satisfied, with a little luck: we needed |Ue3| 6= 0. X

April 27, 2016 ν World
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What Could We Run Into?

• New neutrino states. In this case, the 3× 3 mixing matrix would not
be unitary.

• New short-range neutrino interactions. These lead to, for example,
new matter effects. If we don’t take these into account, there is no
reason for the three flavor paradigm to “close.”

• New, unexpected neutrino properties. Do they have nonzero magnetic
moments? Do they decay? The answer is ‘yes’ to both, but nature
might deviate dramatically from νSM expectations.

• Weird stuff. CPT-violation. Decoherence effects (aka “violations of
Quantum Mechanics.”)

• etc.
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Case Studies

I will briefly mention two case-studies: the fourth-neutrino hypothesis and
non-standard neutral-current neutrino–matter interactions. In general

• I will mostly discuss, for concreteness, the DUNE setup;

• I don’t particularly care about how likely, nice, or contrived the scenarios

are. It is useful to consider them as well-defined ways in which the

three-flavor paradigm can be violated. They can be used as benchmarks for

comparing different efforts, or, perhaps, as proxies for other new

phenomena.

• I will mostly be interested in three questions:

– How sensitive are next-generation long-baseline efforts?;

– How well they can measure the new-physics parameters, including new

sources of CP-invariance violation?;

– Can they tell different new-physics models apart?
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A Fourth Neutrino

(Berryman et al, arXiv:1507.03986)

If there are more neutrinos with a well-defined mass, it is easy to extend the

paradigm:

0BBBBBBBBB@

νe

νµ

ντ

ν?

...

1CCCCCCCCCA
=

0BBBBBBBBB@

Ue1 Ue2 Ue3 Ue4 · · ·

Uµ1 Uµ2 Uµ3 Uµ4 · · ·

Uτ1 Uτ2 Uτ3 Uτ4 · · ·

U?1 U?2 U?3 U?4 · · ·
...

...
...

...
. . .

1CCCCCCCCCA

0BBBBBBBBB@

ν1

ν2

ν3

ν4

...

1CCCCCCCCCA
• New mass eigenstates easy: ν4 with mass m4, ν5 with mass m5, etc.

• What are these new “flavor” (or weak) eigenstates ν?? Here, the answer is

we don’t care. We only assume there are no new accessible interactions

associated to these states.
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Ue2 = s12c13c14,

Ue3 = e−iη1s13c14,

Ue4 = e−iη2s14,

Uµ2 = c24

`
c12c23 − eiη1s12s13s23

´
− ei(η2−η3)s12s14s24c13,

Uµ3 = s23c13c24 − ei(η2−η3−η1)s13s14s24,

Uµ4 = e−iη3s24c14,

Uτ2 = c34

`
−c12s23 − eiη1s12s13c23

´
− eiη2c13c24s12s14s34

−eiη3
`
c12c23 − eiη1s12s13s23

´
s24s34,

Uτ3 = c13c23c34 − ei(η2−η1)s13s14s34c24 − eiη3s23s24s34c13,

Uτ4 = s34c14c24.

When the new mixing angles φ14, φ24, and φ34 vanish, one encounters oscillations

among only three neutrinos, and we can map the remaining parameters {φ12, φ13, φ23,

η1} → {θ12, θ13, θ23, δCP }.

Also

ηs ≡ η2 − η3,

is the only new CP-odd parameter to which oscillations among νe and νµ are sensitive.
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[Berryman et al, arXiv:1507.03986]
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[Berryman et al, arXiv:1507.03986]
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Non-Standard Neutrino Interactions (NSI)

(AdG and Kelly, arXiv:1511.05562)

Effective Lagrangian:

LNSI = −2
√

2GF (ν̄αγρνβ)
X

f=e,u,d

(εfLαβfLγ
ρfL + εfRαβfRγ

ρfR) + h.c.,

For oscillations,

Hij =
1

2Eν
diag

˘
0,∆m2

12,∆m
2
13

¯
+ Vij ,

where

Vij = U†iαVαβUβj ,

Vαβ = A

0BB@
1 + εee εeµ εeτ

ε∗eµ εµµ εµτ

ε∗eτ ε∗µτ εττ

1CCA ,

A =
√

2GFne. εαβ are linear combinations of the εfL,Rαβ . Important: Propagation

effects only. We don’t include NSI effects in production or detection.
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There are new sources of CP-invariance violation! [easier to see T-invariance violation]

[AdG and Kelly, arXiv:1511.05562]
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[AdG and Kelly, arXiv:1511.05562]

April 27, 2016 ν World
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The Short Baseline Anomalies

Different data sets, sensitive to L/E values small enough that the known
oscillation frequencies do not have “time” to operate, point to unexpected
neutrino behavior. These include

• νµ → νe appearance — LSND, MiniBooNE;

• νe → νother disappearance — radioactive sources;

• ν̄e → ν̄other disappearance — reactor experiments.

None are entirely convincing, either individually or combined. However,
there may be something very very interesting going on here. . .
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André de Gouvêa Northwestern

What is Going on Here?

• Are these “anomalies” related?

• Is this neutrino oscillations, other new physics, or something else?

• Are these related to the origin of neutrino masses and lepton mixing?

• How do clear this up definitively?

Need new clever experiments, of the short-baseline type (and we are
working on it)!

Observable wish list:

• νµ disappearance (and antineutrino);

• νe disappearance (and antineutrino);

• νµ ↔ νe appearance;

• νµ,e → ντ appearance.
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If the oscillation interpretation of the short-baseline anomalies turns out
to be correct . . .

• We would have found new particle(s)!!!!!! [cannot overemphasize this!]

• Lots of Questions! What is it? Who ordered that? Is it related to the
origin of neutrino masses? Is it related to dark matter?

• Lots of Work to do! Discovery, beyond reasonable doubt, will be
followed by a panacea of new oscillation experiments. If, for example,
there were one extra neutrino state the 4× 4 mixing matrix would
require three more mixing angles and three more CP-odd phases.
Incredibly challenging. For example, two of the three CP-odd
parameters, to zeroth order, can only be “seen” in tau-appearance.
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For example, if the new neutrino states are the “right-handed neutrinos”
from the standard seesaw, independent from the short-baseline anomalies
(for an inverted mass hierarchy, m4 = 1 eV(� m5)) . . .

[AdG, Huang, 1110.6122]

• νe disappearance with an associated effective mixing angle sin2 2ϑee > 0.02.

An interesting new proposal to closely expose the Daya Bay detectors to a

strong β-emitting source would be sensitive to sin2 2ϑee > 0.04;

• νµ disappearance with an associated effective mixing angle sin2 2ϑµµ > 0.07,

very close to the most recent MINOS lower bound;

• νµ ↔ νe transitions with an associated effective mixing angle

sin2 ϑeµ > 0.0004;

• νµ ↔ ντ transitions with an associated effective mixing angle

sin2 ϑµτ > 0.001. A νµ → ντ appearance search sensitive to probabilities

larger than 0.1% for a mass-squared difference of 1 eV2 would definitively

rule out m4 = 1 eV if the neutrino mass hierarchy is inverted.
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Understanding Fermion Mixing

One of the puzzling phenomena uncovered by the neutrino data is the

fact that Neutrino Mixing is Strange. What does this mean?

It means that lepton mixing is very different from quark mixing:

[|(VMNS)e3| < 0.2]

WHY?

They certainly look VERY different, but which one would you label
as “strange”?
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“Left-Over” Predictions: δ, mass-hierarchy, cos 2θ23

[Albright and Chen, hep-ph/0608137]

| |
| |
| |
| |
| |
| |
| |
| |
| |Daya Bay

(3 σ)

↔
↔
↔
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3
Anarchy vs. Order — more precision required!

Order: sin2 θ13 = C cos2 2θ23, C ∈ [0.8, 1.2] [AdG, Murayama, 1204.1249]
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In Conclusion

The venerable Standard Model sprung a leak in the end of the last
century: neutrinos are not massless! (and we are still trying to patch it)

1. We still know very little about the new physics uncovered by neutrino

oscillations.

2. neutrino masses are very small – we don’t know why, but we think it

means something important.

3. neutrino mixing is “weird” – we don’t know why, but we think it means

something important.
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4. we need a minimal νSM Lagrangian. In order to decide which one is

“correct” we need to uncover the faith of baryon number minus

lepton number (0νββ is the best [only?] bet).

5. We need more experimental input These will come from a rich, diverse

experimental program which relies heavily on the existence of underground

facilities capable of hosting large detectors (double-beta decay,

precision neutrino oscillations, supernova neutrinos, nucleon

decay). Also “required”

• Powerful neutrino beam;

• Precision studies of charged-lepton lepton properties and processes;

• High energy collider experiments (the LHC will do for now);

6. There is plenty of room for surprises, as neutrinos are potentially very

deep probes of all sorts of physical phenomena. Remember that neutrino

oscillations are “quantum interference devices” – potentially very sensitive

to whatever else may be out there (e.g., Λ ' 1014 GeV).
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O, wonder!

How many goodly creatures are there here!

How beauteous mankind is! O brave new world,

That has such people in’t!

W. Shakespeare, “The Tempest,” Act V, Scene 1
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André de Gouvêa Northwestern

Backup Slides . . .
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Not all is well(?): The Short Baseline Anomalies

Different data sets, sensitive to L/E values small enough that the known
oscillation frequencies do not have “time” to operate, point to unexpected
neutrino behavior. These include

• νµ → νe appearance — LSND, MiniBooNE;

• νe → νother disappearance — radioactive sources;

• ν̄e → ν̄other disappearance — reactor experiments.

None are entirely convincing, either individually or combined. However,
there may be something very very interesting going on here. . .
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• LSND

• MB ν

• MB, ν̄

[Courtesy of G. Mills]
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[Statistical Errors Only]

[Courtesy of G. Mills]
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What is Going on Here?

• Are these “anomalies” related?

• Is this neutrino oscillations, other new physics, or something else?

• Are these related to the origin of neutrino masses and lepton mixing?

• How do clear this up definitively?

Need new clever experiments, of the short-baseline type!

Observable wish list:

• νµ disappearance (and antineutrino);

• νe disappearance (and antineutrino);

• νµ ↔ νe appearance;

• νµ,e → ντ appearance.
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High-energy seesaw has no other observable consequences, except, perhaps, . . .

Baryogenesis via Leptogenesis

One of the most basic questions we are allowed to ask (with any real hope
of getting an answer) is whether the observed baryon asymmetry of the
Universe can be obtained from a baryon–antibaryon symmetric initial
condition plus well understood dynamics. [Baryogenesis]

This isn’t just for aesthetic reasons. If the early Universe undergoes a
period of inflation, baryogenesis is required, as inflation would wipe out
any pre-existing baryon asymmetry.

It turns out that massive neutrinos can help solve this puzzle!
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In the old SM, (electroweak) baryogenesis does not work – not enough
CP-invariance violation, Higgs boson too light.

Neutrinos help by providing all the necessary ingredients for successful
baryogenesis via leptogenesis.

• Violation of lepton number, which later on is transformed into baryon
number by nonperturbative, finite temperature electroweak effects (in
one version of the νSM, lepton number is broken at a high energy
scale M).

• Violation of C-invariance and CP-invariance (weak interactions, plus
new CP-odd phases).

• Deviation from thermal equilibrium (depending on the strength of the
relevant interactions).
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E.g. – thermal, seesaw leptogenesis, L ⊃ −yiαLiHNα − Mαβ
N

2 NαNβ +H.c.

• L-violating processes

• y ⇒ CP-violation

• deviation from thermal eq.
constrains combinations of

MN and y.

• need to yield correct mν

not trivial!

[G. Giudice et al, hep-ph/0310123]

[Fukugita, Yanagida]
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E.g. – thermal, seesaw leptogenesis, L ⊃ −yiαLiHNα − Mαβ
N

2 NαNβ +H.c.

[G. Giudice et al, hep-ph/0310123]

It did not have to work – but it does

MSSM picture does not quite work – gravitino problem

(there are ways around it, of course...)
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Relationship to Low Energy Observables?

In general . . . no. This is very easy to understand. The baryon asymmetry
depends on the (high energy) physics responsible for lepton-number
violation. Neutrino masses are a (small) consequence of this physics,
albeit the only observable one at the low-energy experiments we can
perform nowadays.

see-saw: y,MN have more physical parameters than mν = ytM−1
N y.

There could be a relationship, but it requires that we know more about
the high energy Lagrangian (model depent). The day will come when we
have enough evidence to refute leptogenesis (or strongly suspect that it is
correct) - but more information of the kind I mentioned earlier is really
necessary (charged-lepton flavor violation, collider data on EWSB,
lepton-number violation, etc).
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Making Predictions, for an inverted mass hierarchy, m4 = 1 eV(� m5)

[AdG, Huang, 1110.6122]

• νe disappearance with an associated effective mixing angle
sin2 2ϑee > 0.02. An interesting new proposal to closely expose the
Daya Bay detectors to a strong β-emitting source would be sensitive
to sin2 2ϑee > 0.04;

• νµ disappearance with an associated effective mixing angle
sin2 2ϑµµ > 0.07, very close to the most recent MINOS lower bound;

• νµ ↔ νe transitions with an associated effective mixing angle
sin2 ϑeµ > 0.0004;

• νµ ↔ ντ transitions with an associated effective mixing angle
sin2 ϑµτ > 0.001. A νµ → ντ appearance search sensitive to
probabilities larger than 0.1% for a mass-squared difference of 1 eV2

would definitively rule out m4 = 1 eV if the neutrino mass hierarchy
is inverted.
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Weak Scale Seesaw, and Accidentally Light Neutrino Masses
[AdG arXiv:0706.1732 [hep-ph]]

What does the seesaw Lagrangian predict

for the LHC?

Nothing much, unless. . .

• MN ∼ 1− 100 GeV,

• Yukawa couplings larger than naive
expectations.

⇐ H → νN as likely as H → bb̄!

(NOTE: N → `q′q̄ or ``′ν (prompt)

“Weird” Higgs decay signature! )
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And that is not all! Neutrinos are unique probes of several different
physics phenomena from vastly different scales, including. . .

• Dark Matter;

• Weak Interactions;

• Nucleons;

• Nuclei;

• the Earth;

• the Sun;

• Supernova explosions;

• The Origin of Ultra-High Energy Cosmic Rays;

• The Universe.
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Big Bang Neutrinos are Warm Dark Matter
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“Atmospheric Oscillations” in the Electron Sector: Daya Bay, RENO, Double Chooz

Pee = 1− sin2 2θ sin2
“

∆m2L
4E

”

phase= 0.64
“

∆m2

2.5×10−3 eV2

” “
5 MeV
E

” “
L

1 km

”

Triumph of the 3 flavor

paradigm!

[Daya Bay Coll., 1203.1669]
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NuFIT 2.0 (2014)

But it is a start. . .

Where We Are (?) [This is Not a Proper Comparison Yet!]

[Gonzalez-Garcia, Maltoni, Schwetz, 1409.5439, http://www.nu-fit.org]
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CP-invariance Violation in Neutrino Oscillations

The most promising approach to studying CP-violation in the leptonic
sector seems to be to compare P (νµ → νe) versus P (ν̄µ → ν̄e).

The amplitude for νµ → νe transitions can be written as

Aµe = U∗
e2Uµ2

(
ei∆12 − 1

)
+ U∗

e3Uµ3

(
ei∆13 − 1

)
where ∆1i = ∆m2

1iL
2E , i = 2, 3.

The amplitude for the CP-conjugate process can be written as

Āµe = Ue2U
∗
µ2

(
ei∆12 − 1

)
+ Ue3U

∗
µ3

(
ei∆13 − 1

)
.

[I assume the unitarity of U , Ue1U
∗
µ1 = −Ue2U∗µ2 − Ue3U∗µ3]
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In general, |A|2 6= |Ā|2 (CP-invariance violated) as long as:

• Nontrivial “Weak” Phases: arg(U∗
eiUµi) → δ 6= 0, π;

• Nontrivial “Strong” Phases: ∆12, ∆13 → L 6= 0;

• Because of Unitarity, we need all |Uαi| 6= 0 → three generations.

All of these can be satisfied, with a little luck: we needed |Ue3| 6= 0. X
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[K. Abazajian et al. arXiv:1309.5386]
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What We Are Trying To Understand:

⇐ NEUTRINOS HAVE TINY MASSES

⇓ LEPTON MIXING IS “WEIRD” ⇓
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E.g., CPV in 3+1 Scenarios. νSTORM+, νe → νµ at the “optimal” baseline. . .

]2
 [e

V
2 14

m
6

0.98

0.99

1

1.01

1.02

/- /2/- 0 /2/ /

sq

⋆

s
e

0.17

0.18

0.19

/- /2/- 0 /2/ /

sq

⋆

[AdG, Kelly, Kobach, arXiv:1412.1479]
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Solar Neutrinos

We are not done yet!

• see “vaccum-matter”
transition

• probe for new physics:
NSI, pseudo-Dirac, . . .

• probe of the solar interior!
“solar abundance problem”

(see e.g. 1104.1639)

‘CNO neutrinos may provide

information on planet formation!’

[Friedland, Shoemaker 1207.6642]
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Constraining the Decay of Neutrinos – Solar Edition

(NOTE: d3 = any)

[Berryman, AdG, Hernández, arXiv:1411.0308]

Model-independently,

we know little about

the neutrino lifetime.

νSM: τ > 1037 years.

Here, di = mi/τi

τi = 7
“
mi

1 eV
10−13

di

”
ms
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Neutrino Mixing Anarchy: Alive and Kicking!

[AdG, Murayama, 1204.1249]
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E.g. Charged-Lepton Flavor Violation

In the old SM, the rate for charged lepton flavor violating processes is trivial to

predict. It vanishes because individual lepton-flavor number is conserved:

• Nα(in) = Nα(out), for α = e, µ, τ .

But individual lepton-flavor number are NOT conserved– ν oscillations!

Hence, in the νSM (the old Standard Model plus operators that lead to neutrino

masses) µ→ eγ is allowed (along with all other charged lepton flavor violating

processes).

These are Flavor Changing Neutral Current processes, observed in the quark

sector (b→ sγ, K0 ↔ K̄0, etc).

Unfortunately, we do not know the νSM expectation for charged lepton flavor

violating processes → we don’t know the νSM Lagrangian !
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One contribution known to be there: active neutrino loops (same as quark sector).

In the case of charged leptons, the GIM suppression is very efficient. . .

e.g.: Br(µ→ eγ) = 3α
32π

∣∣∣∑i=2,3 U
∗
µiUei

∆m2
1i

M2
W

∣∣∣2 < 10−54

[Uαi are the elements of the leptonic mixing matrix,

∆m2
1i ≡ m2

i −m2
1, i = 2, 3 are the neutrino mass-squared differences]
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e.g.: SeeSaw Mechanism [minus “Theoretical Prejudice”]

arXiv:0706.1732 [hep-ph]
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