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References and thanks

• Useful references for this short course are:

• QCD and Collider Physics 
R. K. Ellis, W. J. Stirling and B. R. Webber
Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology 

•  Hard Interactions of Quarks and Gluons: a Primer for LHC Physics
J. C., J. W. Huston and W. J. Stirling
Rept. Prog. Phys. 70, 89 (2007) [hep-ph/0611148]

• Resource Letter: Quantum Chromodynamics
A. S. Kronfeld and C. Quigg
arXiv:1002.5032 [hep-ph] (for the American Journal of Physics)

• Thanks to R. K. Ellis and G. Zanderighi, for lecture notes from previous 
schools - upon which much of these lectures will be based.
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QCD: why we care

• It is no surprise that hadron colliders
require an understanding of QCD.

• This plot demonstrates the extent
to which we must have a good
understanding,

• cross sections for inclusive
bottom production and final
states with jets of hadrons
are near the top.

• Higgs boson cross sections
are at the bottom.

• Discovering such New Physics
requires a sophisticated,
quantitative understanding of QCD.

• In these lectures, we will develop the
 tools necessary for such a task.
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QCD: why we care even more
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• If a Higgs-like signal is observed,
to confirm its interpretation as the
Higgs boson requires measurement
of its couplings and quantum numbers.

• need an accurate understanding of
the production/decay mechanisms.

• Hopefully, we will see more than just
a Higgs boson.

supersymmetry?

extra dimensions?

technicolor?

• All of these models of New Physics
introduce new particles that will (most
likely) decay as they traverse the detectors,
into “old” colored particles → QCD interactions.
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The challenge of QCD
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LQCD = −1
4
FA

µνFµν
A +

∑

flavors

q̄i (iD/−m)ij qj
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Tasks for today
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Tasks for today

• Understand why the Lagrangian looks like this:

• why color and why SU(3)?
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Tasks for today

• Understand why the Lagrangian looks like this:

• why color and why SU(3)?

• Understand some features of this Lagrangian:

• in practical terms, how does QCD differ from QED?

• Understand how to use this Lagrangian:

• how can we use it to make predictions?
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Quarks and color

• The quark model is a useful
way of categorizing mesons
(baryons) in terms of two
(three) constituent quarks.
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Baryon decuplet (S=3/2)

Q=+2/3 up
mu~4 MeV

charm 
mc~1.5 GeV

top
 mt~172 GeV

Q=-1/3 down 
md~7 MeV

strange 
ms~135 MeV

bottom 
mb~5 GeV

• Simple picture must be amended due 
to, for example, Δ++=(u,u,u) in a 
symmetric spin state.

• The baryons should obey the Pauli 
principle: the overall wavefunction 
should be antisymmetric.

• In order to accommodate this, the 
antisymmetry should be carried by 
another quantum number: color.

• Observed particles are colorless.
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Probing color

• Subsequent realization that color could be probed directly in e+e- collisions.

• production of fermion pairs through
a virtual photon sensitive to electric
charge of fermion and the number
of degrees of freedom allowed.

• Hence investigate quarks through
“R-ratio”:

(this is at least the most basic expectation - corrections later)

• Each active quark is produced in Nc colors: must be above the kinematic 
threshold for each quark in the sum, i.e. √s > 2mq.
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e+

e-

f

f-cross section
~ Qf2

R =
σ (e+e− → hadrons)
σ (e+e− → µ+µ−)

= Nc

∑

f

Q2
f

assume Nc colors of quark

quark 
charge

sum over active quarks
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Experimental measurements
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Experimental measurements
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QCD interactions

• In QCD, the color quantum number is mediated by the gluon, analogous to the 
photon in QED.

• it will be responsible for changing quarks from one color to another; as 
such it must also carry a color charge (not neutral, as in QED).

• 1st try: mediating quark and anti-quark of 3 different colors → 3 x 3 = 9 gluons.

• In fact we should take six such combinations, plus three mutually orthogonal 
combinations of same-color states.
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red (R)

blue (B)
-

gluon 
(RB)
- or as

“color flow”

R

B

B
R

-

-

RB  RG  

GB  GR  

BR  BG

- -

- -

- -

(RR - BB)/√2

(RR + BB - 2 GG)/√6

(RR + BB + GG)/√3

-

-

-

-

-

-

-
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QCD interactions

• Since color is an internal degree of freedom, we expect invariance of the 
theory under rotations in this color space.

• this requires that eight of our color combinations share the same coupling:

• the remaining combination only transforms into itself - it is a color singlet:

• Such a combination is not present in QCD: we are left with 8 gluons.

• The color charge of each gluon is represented by a matrix in color space.

• the eight combinations result in eight matrices, TA, with A=1,..8.

• a conventional choice is to write these in terms of the Gell-Mann matrices, 
which are just an extension of Pauli Matrices:
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RB  RG  

GB  GR  

BR  BG

- -

- -

- -

(RR - BB)/√2

(RR + BB - 2 GG)/√6

-

-

-

- -

(RR + BB + GG)/√3
- - -

TA =
1
2
λA



λ4 =




0 0 1
0 0 0
1 0 0



 λ5 =




0 0 −i
0 0 0
i 0 0



 λ6 =




0 0 0
0 0 1
0 1 0





λ7 =




0 0 0
0 0 −i
0 i 0



 λ8 =
1√
3




1 0 0
0 1 0
0 0 −2




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Gell-Mann matrices

• These matrices are Hermitian, (λA)† = λA ,and traceless.

• only two diagonal matrices: the color singlet would not have been traceless.

• They obey the two relations:
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λ1 =




0 1 0
1 0 0
0 0 0



 λ2 =




0 −i 0
i 0 0
0 0 0



 λ3 =




1 0 0
0 −1 0
0 0 0





[
λA,λB

]
= 2ifABCλC

completely antisymmetric 
set of real constants, f ABC

Tr
(
λAλB

)
= 2δAB ,
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Color matrices 

• Translating back to color matrices, we have:

• The first of these relations reflects that fact that:

• the matrices TA are the generators of the SU(3) group, A=1,...,8;

• the antisymmetric set, fABC, contains the SU(3) structure constants.

• The second relation is just a normalization convention.

• The group structure is also characterized by two other relations:

13

Tr
(
TATB

)
= TRδAB ( with TR = 1/2)

[
TA, TB

]
= ifABCTC ,

∑

A

TATA = CF 1 with CF =
N2

c − 1
2Nc

=
4
3

3x3 identity matrix “Casimir”

∑

C,D

fACDfBCD = CA δAB with CA = Nc = 3
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Further support for SU(3)

• These color sums are exactly the quantities which will appear when we 
compute cross sections involving QCD.

• In particular, the cross section
for 4-jet production in e+e-

annihilation at LEP is sensitive
to both CA and CF.

• At this point, no one expected
that SU(3) was not the correct
description.

• However, demonstrates that
the group structure is an
important phenomenological
aspect - not just math!
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The QCD Lagrangian

• The quantum field theory of QCD is then based on the Lagrangian:

• Color plays a crucial role in the Lagrangian:
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field strength tensor, gluon 
degrees of freedom

in the non-interacting case, the 
Dirac term for quark d.o.f.

FA
µν = ∂µAA

ν − ∂νAA
µ − gsf

ABCAB
µ AC

ν

AA
µ : field for the spin-1 gluon (just like 

the photon in QED, but with an 
extra color label) 

self-interaction term for 
gluon fields: called “non-
Abelian” since it arises 

from the SU(3) structure

LQCD = −1
4
FA

µνFµν
A +

∑

flavors

q̄i (iDµγµ −m)ij qj
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QCD gauge transformations

• Color also appears in the definition of the covariant derivative:

which couples together quarks and gluons in the interacting theory.

• Such a definition ensures that the QCD Lagrangian remains invariant under 
local gauge transformations of the form,

• Covariant means that it transforms in the same way as the quark field itself.

• Imposing these transformation laws ensures invariance of the second term.
16

LQCD = −1
4
FA

µνFµν
A +

∑

flavors

q̄i (iDµγµ −m)ij qj

(Dµ)ij = ∂µδij + igs(TAAA
µ )ij

qi(x)→ q′
i(x) = Ωij(x)qj(x)

(Dµ)ik qk(x)→
(
D′

µ

)
ik

q′
k(x) = Ωij(x) (Dµ)jk qk(x)

(
Ω†

ik(x)Ωkj(x) = δij

)
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QCD gauge transformations

• To apply the argument on the first term relies upon the specific form we have 
introduced for the covariant derivative.

• This is easiest to see by manipulating the field strength tensor into a new form,

• Lastly, exploit the fact that the commutator transforms in the same way as the 
covariant derivative itself:
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(use comm. relation)

(consider action 
on a field)

=
1

igs
[Dµ, Dν ]

[Dµ, Dν ]ik qk(x)→ Ωij(x) [Dµ, Dν ]jk qk(x)

TAFA
µν = ∂µ(TAAA

ν )− ∂ν(TAAA
µ )− gsT

AfABCAB
µ AC

ν

= ∂µTAAA
ν − (TAAA

ν )∂µ − ∂νTAAA
µ + (TAAA

µ )∂ν

+igs

[
(TBAB

µ )(TCAC
ν )− (TCAC

ν )(TBAB
µ )

]

=
[
∂µ + igs(TBAB

µ )
] [

TAAA
ν +

1
igs

∂ν

]
−

[
∂ν + igs(TBAB

ν )
] [

TAAA
µ +

1
igs

∂µ

]



→ −1
2
Tr

(
Ω TAFA

µν TBFµν
B Ω−1

)
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QCD gauge transformations

• Putting it all together:

so that the field strength transforms as,

• The field strength is no longer gauge invariant as in QED, a reflection of the 
self-interacting nature of gluons.

• However the combination that appears in the Lagrangian is invariant, as 
required:
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(
TAFA

µν

)
ij

qj(x)→
(
TAF ′A

µν

)

ij
q′
j(x)

(
TAFA

µν

)
ij
→ Ωik(x)

(
TAFA

µν

)
k"

Ω−1
"j (x)

Ωij(x)
(
TAFA

µν

)
jk

qk(x) =
(
TAF ′A

µν

)

ij
Ωjk(x)qk(x)

−1
4
FA

µνFµν
A = −1

2
Tr

(
TAFA

µν TBFµν
B

)
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Using the QCD Lagrangian

• Armed with a Lagrangian that is invariant under gauge transformations, we 
can investigate many features of QCD.

• In these lectures, we’re interested in perturbative QCD and cross sections 
computed from Feynman diagrams: convert Lagrangian into Feynman rules.

• Simplest place to start: free, or non-interacting Lagrangian (gs→0).

• Prescription: make the replacement                      (c.f. Fourier expansion) and 
then multiply by i to obtain inverse propagator.
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∂µ → −ipµ

q̄i (i∂µγµ −m) δijqj → iqi (pµγµ −m) δijqj

j ip
i (p/ + m)
p2 −m2

δij

quarks trivial 
color factor

gluons
Cannot invert!

−1
4

(∂µAν − ∂νAµ) (∂µAν − ∂νAµ)→ i

2
Aµ

(
p2gµν − pµpν

)
Aν
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Gauge fixing

• The solution is to fix a gauge: add an additional term to the Lagrangian which 
depends upon an arbitrary gauge parameter λ.

• This contributes an extra term:                         such that an inverse now exists.

• Different gauges may be useful in different calculations, but ultimately must all 
give the same result.
• a particularly simple choice is often the Feynman gauge, λ=1.

• Further complication: covariant gauge-fixing introduces unphysical d.o.f. that 
must be cancelled by ghost contributions - we will not discuss them here. 
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Lgauge−fixing = − 1
2λ

(
∂µAA

µ

)2

gluons
pA,μ B,ν

i

2λ
AµpµpνAν

−i

p2

(
gµν − (1− λ)

pµpν

p2

)
δAB
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QCD interactions

• Interactions between the quarks and gluons can be read off from the terms of 
order gs and higher.

21

quark-gluon
(from covariant 

derivative)

self interactions
(from additional 
terms in the field 

strength)

NB: sum over quark colors
 → trace over T strings
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Quantum number management

22

fABC

from the 
Feynman rules

properties of the 
color matrices

Tr(TA) = 0 = TR

traceless normalization

• Since color is a completely separate degree of freedom, it is often useful to 
factorize out any dependence on color at an early stage of the calculation.

• Each Feynman diagram will be associated with a particular color factor, which 
it is often useful to calculate and account for separately.

• A pictorial way of doing this can be very useful.
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Simple loop calculation

23

W+

W-

u d

d u

H

Basic idea: incoming quarks 
radiate W (or Z) bosons without 
changing direction much.

Higgs boson is produced in the 
central area of the detector 
relatively cleanly.

Simple picture corrected by 
gluon emission and 
absorption by the quarks:

W+

W-

u d

d u

H

• Vector boson fusion is an important Higgs search channel at the LHC.
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Simple loop calculation

23

W+

W-

u d

d u

H

Basic idea: incoming quarks 
radiate W (or Z) bosons without 
changing direction much.

Higgs boson is produced in the 
central area of the detector 
relatively cleanly.

Simple picture corrected by 
gluon emission and 
absorption by the quarks:

W+

W-

u d

d u

H

= 0 when 
interfered with 

diagram above!

• Vector boson fusion is an important Higgs search channel at the LHC.
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Other color identities

24

∑

A

TATA = CF 1 = CF

∑

A

(TA)ij (TA)k! =
1
2

(
δi!δjk −

1
Nc

δijδk!

)

ij

k ℓ

=
1
2

(

− 1
Nc

)j ji i

k kℓ ℓ

∑

C,D

fACDfBCD = CA δAB

• Identities we have already seen:

•  A new relation, the Fierz identity:

(note direction
of arrows)
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Color at work

25

How is 
approx. 
made?

What is 
being 

dropped?

H. Ita, Blackhat (June 2010)
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Simpler example

26

C1 : TATB C2 : TBTA C3 : fXABTX

= TATB − TBTA

• quark+antiquark → W + 2 gluons is enough to see the main features.

• in fact, we will drop the W in the pictures, since it is color-neutral.

• There are then three types of contribution, with the following color diagrams:

• Hence we can already simplify our calculation to:

C2 − C3 :C1 + C3 :
“color-ordered 
amplitudes”



i i

j

A

B

[
recall: (TA

ij )∗ = TA
ji

]

CF C2
F NcC

2
F

(same for |C2 − C3|2)
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Color factors

• To compute the cross section we need the amplitude squared.

• Now we simplify using our pictorial rules:

27

j

A

B =

= = =

|C1 + C3|2 :



(C1 + C3)(C2 − C3)∗ : − 1
2Nc

−CF

2

N2
c CF

2

(
|C1 + C3|2 + |C2 − C3|2 −

1
N2

c

|C1 + C2|2
)
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Color factors

• The interference term is a little more complicated (use Fierz).

• Sum all contributions, keeping one overall factor of CF but expanding other.

28

= =

this is the leading-
color contribution

sub-leading: does not contain 
any remnant of the triple-gluon 

diagrams (i.e. QED-like)
(color-ordered contributions)
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Recipe for QCD cross sections

1.Identify the final state of interest, e.g. leptons, photons, quarks, gluons.

2.Draw the relevant Feynman diagrams and begin calculating.

• take care of QCD color factors using color algebra.

• compute the rest of the diagram using the usual Gamma-matrix algebra.

3.This gives us the squared matrix elements.

4.To turn into a cross section, we need to integrate over momentum degrees of 
freedom → phase space integration.

• for final state momenta, this is just like QED. 

• in the initial state, we have the additional complication that we are colliding 
protons and not quarks/gluons.

• more on this later.

• this step almost always performed numerically - “Monte Carlo integration”.

29
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Identifying the final state

30

energetic partons
ū

u

ū
d
d̄

s
s̄

u K+

K0

π−
hadronization

• From the beginning, we noted that all particles observed in experiments 
should be color neutral → no quarks or gluons.

• How then can we mesh experimental observations with the QCD Lagrangian, 
which necessarily involves the fundamental quark and gluon fields?

• A scattering can be described in terms of energetic quarks and gluons 
(partons) that subsequently hadronize, combining into color-neutral mesons 
and baryons, without too much loss of energy.

• This concept is often referred to as local parton-hadron duality.

• This naturally accommodates the replacement of jets of particles in the final 
state by an equivalent number of quarks or gluons.
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Leading order tools
• The leading order estimate of the cross section is obtained by computing all 

relevant tree-level Feynman diagrams (i.e. no internal loops).

• Nowadays this is practically a solved problem - many suitable tools available.
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ALPGEN
M. L. Mangano et al.

http://alpgen.web.cern.ch/alpgen/

AMEGIC++
F. Krauss et al.

http://projects.hepforge.org/sherpa/dokuwiki/doku.php

CompHEP
E. Boos et al.

http://comphep.sinp.msu.ru/

HELAC
C. Papadopoulos, M. Worek

http://helac-phegas.web.cern.ch/helac-phegas/helac-phegas.html

Madevent
F. Maltoni, T. Stelzer

http://madgraph.roma2.infn.it/

http://alpgen.web.cern.ch/alpgen/
http://alpgen.web.cern.ch/alpgen/
http://alpgen.web.cern.ch/alpgen/
http://alpgen.web.cern.ch/alpgen/
http://alpgen.web.cern.ch/alpgen/
http://alpgen.web.cern.ch/alpgen/
http://alpgen.web.cern.ch/alpgen/
http://alpgen.web.cern.ch/alpgen/
http://alpgen.web.cern.ch/alpgen/
http://alpgen.web.cern.ch/alpgen/
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Madgraph

32

http://madgraph.roma2.infn.it/
http://madgraph.roma2.infn.it/
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Recap

• The role of color in the theory of QCD is experimentally measurable.

• good evidence for Nc=3.

• The Lagrangian of QCD is based on the SU(3) gauge group.

• QCD interactions can be represented by a relatively short list of Feynman 
rules, which can be read off from the Lagrangian.

• color leads to self-interaction between gluons (triple- and 4-gluon) vertices.

• more profound differences between QCD and QED we will discuss later.

• Accounting for color is performed using Gell-Mann matrices, whose properties 
can be used to write amplitudes in terms of color factors CF=4/3 and CA=Nc=3.

• a pictorial method for computing color factors is a handy tool.

• The computation of leading order cross sections is a solved problem.

• many tools available to do the work for you.
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