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Lecture 3: The strong coupling and pdfs
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£ M Tasks for today

 Understand the need for renormalization.

* ultraviolet singularities and the running coupling.

* Understand the importance of factorization.

» overview of parton distribution functions.

* Investigate some phenomenological consequences of the
renormalization and factorization procedures.

» motivation for higher orders in perturbation theory.
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1 A simple loop integral

» Take a very simple process at hadron colliders - inclusive jet production.

example . )
diagram for amplitude ~ g5 ~ a;
99—39d

* Now consider higher order perturbative corrections to this process.

* if we don’t want to change final state all we can do is add internal loops,
e.g.
/

2

amplitude ~ (¢g2)? ~ a*

~—"
{+p
4
Feynman rules: integrate over / d*¢ 1
unconstrained loop momentum: (2m)4 £2(0 4 p)?
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Regularization

* For large loop momenta we have a problem:

/ d*/ 1 \de\
(2m)* £2(L 4 p)?

* This is called an ultraviolet singularity.

~ log(|¢])

* Reqularization is the procedure with which we handle this singularity.

* Obvious solution: cut off all loop integrals at some scale A with the

singularities all now manifest as terms proportional to log(A) .

* main problem: not gauge invariant.

* The usual solution nowadays is to use dimensional regularization:
change from the normal 4 to d=4-2¢ dimensions.

/ d*—2</ 1 1 _ dle| (p*)~¢
(

Y

2\ —¢€
27-‘-)4—26 g2(€_|_p)2 (27T)4—26 (p ) ’€‘1+26 €

\

this must be the factor, for €0, i.e. less than 4 dim.
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Renormalization

« QCD is a renormalizable theory, which means that these singularities can be
absorbed into a small number of (infinite) bare quantities.

* any physical observable, computed using the renormalized quantities, is
then finite.

 In dimensional regularization, we changed the dimensionality of our integral in
order to render it finite. In order to keep physical observables in four
dimensions we must introduce a quantity to absorb the extra dimensions, i.e.

(p2€)_€ . (p2//22)_€ _ % L log(pQ/,uz)

* The new quantity u is the renormalization scale. Renormalized quantities
depend on .

* The singularity is now easily removed by subtraction, but there is ambiguity in
whether any constant (if any) also goes.

just the pole minimal subtraction (MS)
pole + specific constant MS (“MS-bar”)

Quantum Chromodynamics - John Campbell -

5



Renormalization scale independence

* For a meaningful theory, it must be that any physical observable R is
independent of the (arbitrary) choice of p.

« Choose particular observable that depends on a single hard energy scale, Q,
(e.g. inclusive W production at the LHC: Q = My).

* This observable can only depend upon the ratio of the dimensionful scales,
Q/u, and on the renormalized coupling, s = s ().

dR 0 OJags O
@_<3u' O 0as>R_O

— (~@) g+ e R

(Q/k)  Ou Jo
« Two definitions help to simplify this:
t =log(Q/u) Blas) = w 5;;5 beta function
(recognizes logarithmic (parametrizes unknown
derivative in first term) iIn second term)

Quantum Chromodynamics - John Campbell - 6



> R(et, o) = 0

- This has a simple solution if we allow a running coupling, a5 (@) .

* |In that case, we can balance the partial derivatives by requiring,

Jovg (@) Iy
ﬁ(O&S) — It — t = /as %

* Differentiating this form of the solution then gives the further relation:

_ 90,(Q) 90,(Q) _ la(Q))

ot — 8043 B 6(048)

B(as(Q))

 These two identities ensure that the function R(1, as(Q)) is also a solution.

R(Q/p, as) R(1,as(Q))
dependence on ren. | > renormalized coupling,
scale and bare coupling scale dependence in s
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The beta function

Oag Oag

5(&8) — H o1 — 9(log 1)

* The beta function must be extracted from higher order loop calculations,
I.e. in a perturbative fashion.

At one-loop we find: / m@-ﬁﬁmﬁm
1IN, —2ny

s)=—bpaZ+..., by=
* this is in contrast to QED, where there is no color term, so positive.

* In QCD, the beta-function is negative.

* The beta function of QCD has now been computed up to 4 loops

* further perturbative corrections do not change the essential features
of this picture.
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Explicit running

 With this perturbative form, can now solve for the form of the running coupling.

oo 1 ]#=¢ _
° = —b 042 — | — — bn llo H=aq
O(log 1) o {a} o log
S. Bethke, 2009
g (,LL) 0-5 l July 2009
— a5(Q) =
1 + (s ('u)b() 1Og(Q/’u) uS(Q} I'% » & Deep Inelastic Scattering
oe e'e Annihilation
* As Q increases, the denominator 0414\ 0@ Heavy Quarkl:min
wins and the coupling goes to zero.
e this is asymptotic freedom. 03|
* In the opposite limit the coupling
becomes large. 02|
 our perturbation theory is no
longer reliable. o1l
+ suggests onset of confinement ==QCD oM7) = 0.1184 = 0.0007

1 100

" Q[GeV]
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Conventions

* |t used to be common to write equations for the running coupling in terms of a
parameter A acp - roughly, the scale at which the coupling becomes large.

At one loop:

0.(Q) s (1) 1

T 1+ as(mbolog(Q/)  bolog(Q/Agen)

— G = Q exp 1/ (b0 (Q))]

* Measurements of the strong coupling suggest Aacp in the range 200-300 MeV.

» Unfortunately the definition of Aaco must change when working at higher
orders and when including different numbers of light flavors — confusion!

* A better - and now widespread - convention is to refer to the strong coupling at
a reference scale, usually M..

 far away from quark thresholds, well into the perturbative region

« convenient for the many measurements taken on the Z pole at LEP.
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T-decays (N3LO) I.:;H
Quarkonia (lattice) I-CIH
I
Y decays (NLO) O
I
DIS F, (N3LO) —o— |
DIS jets (NLO) —-O—i
I
ete™ jets & shps (NNLO) ——O+—
I
electroweak fits (N3LO) I—:-l:‘:—|
ete™ jets & shapes (NNLO) —o
0.12

0.11 013

o5 (Mz)

« Some signs that very recent
determinations from event shapes
at LEP may be consistently smaller
than low-energy extractions.

S. Bethke, 2009

* Broad agreement between
different extractions

* many different experiments
with (mostly) unrelated
sources of error.

&S(Mz) — (0.1184 £+ 0.0007

NMLO eveant shape moments, analylic powaear corr.

- '
B [JADEOPAL: Gehrmann, Jaguiar, Luisoni)

MNMLO+M3LLA thrust, shapse function

— & (LEF: Abbate et al)

MNMLOEN3LLA heawy jel mass . ®
(ALEFHMOPAL: Chien, Schwarkz) ]

MNLO+MALLA thrust
- —e——

(ALEPH'OPAL: Bacher, Schwartz)
- " o MNMLO three-jel rate
[ : [ALEPH: Disserari et al.)
- } } 2 MMLO+MLLA avent shapes

(JADE: Bethke et al.)

MNMLO+NLLA event shapes

- 1
[(ALEPH: Dissertori ot al.) ' ®
[ PDG 2010: MMNLO event shapes exp. 10
= 0.1184 = 0.0007 {ALEPH: Dissertor el al.) } t & { {
B L 1 L 1 I 1 1 L I 1 I L I L 1 I
0.11 0.115 012 0125 013
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Partons and protons

* An important consideration, that we have not yet discussed, is that we are In
the era of hadron colliders.

 We have already seen that the QCD Lagrangian tells us how to describe QCD
In terms of partons, but struggles with hadrons.

* A“simple” formalism can be
TAR = /da;adxb faya(xa) fo/B(26) Gap—x  introduced to help.

* |t describes the cross section in
terms of a factorization:

proton

* soft physics describing the
probability of finding, within a
proton, a parton with a given
momentum fraction of proton.

* a subsequent hard scattering
between partons (well-
described in QCD pert. th.)
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Parton distribution functions

» The “probability” functions are parton distribution functions (pdfs): fu 4 (%a).
- in this simple picture, they are functions of momentum fraction, z, = F,/Ep.

 Since they cannot be computed from first principles, they must be extracted
from experimental data.

* Deep inelastic scattering in ep collisions (HERA) is an ideal environment in
which to do this.

 pdf (QCD) enters only in - e (k)
part of the initial state; e (k)

e the rest is QED - well-known.

Y (@)
« Valence quark distributions are the
obvious ones. For a proton, u and d.

« Sea quarks are the rest, which one
can think of as being produced from
gluon splitting inside the proton.

proton (p) ) X
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* The answer of course depends upon how many such branchings have
occurred within the proton before the hard scattering takes place.

* If this looks familiar, it is - the picture is very much the same as for parton
showers in the final state.

* The formalism leads to a picture in which the pdfs must also be functions of
the scale at which they are probed: f(z) — f(x, Q?), together with a DGLAP
equation as before:

Q° (@, Q) _ /O1 dz (%> Pay(2) <%f(a:/z, Q%) — fl(x, Q2)>

0Q)? 27
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=¥ DGLAP revisited

* In this context, the equation is more usefully written in the form:

85&; 2? - / P (22) (Pu(a)], flaf2 @)

where the new “plus prescription” is defined by:

/O 4z ()4 f(2) = / dzg(2) [f(z) — f(1)

* We see that, written in this way, it is clear there can be no singularity as z—17 .

/ [Pl 1) = Cr / a: (i’f) ()~ F(1)]

_CF/Oldz{(11+f) - |1 —<1+z>} )

:0/ T {1+ 2)E) -2 W)} + 2Crf)

[La{ i+ Ss0-a e
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Regularized splitting functions

 We have found:

1+ 22 3
(1 —Z)_|_ | 5(5(1 —Z)}

and could derive a similar result for Pgg(z), again containing a d-function term.

Py(2)], = Cr {

* These are called reqgularized splitting functions.

* They are often denoted simply by Pap, with the unregularized forms denoted
by a circumflex (beware my slight abuse of this notation in these lectures).

* The additional d-function terms correspond to no momentum lost during the
evolution.

» they are interpreted as y > M
virtual corrections; X X BT I

* this formalism is thus

. . X
often said to include evolution by virtual evolution by
part of the higher-order emission and re- branching (z<7)
corrections. absorption (z=7)
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« Combination of
HERA data (H1
and ZEUS
experiments) over
the period from
1994 to 2000.

Onc(xQ) x 2

» Scaling violation
predicted in the
QCD-improved
parton model is
clearly visible in
data.

 Although pdfs are
not calculable in

perturbative QCD,
their evolution is.

107

10 ®

10°

10

10

10

10

Experimental confirmation

H1 and ZEUS

e HERAINCe'p
Fixed Target
e HERAPDF1.0

- x = 0.00005, i=21
x = 000008, i=20

» x = 0.00013, i=19
x = 0.00020, i=18

x = 0.00032,i=17
x = 0.0005, i=16

x = (L0008, i=15
asoe  x=00013,i=14

L L

e et eeeees x=0.0020,i=13
snne®® .
- I x = 0.0032,i=12

a-aev— X =0005,i=11

Ll o '_'_,-,..-.,..Hﬂ—l"l x = 0,008, i=10

_————
o -t s ossseeseetess X = 0.013,i=9
R

s -** eese e oo sssesstaty x=002,i=8

o« T  sssssessecessssssese  x=0032,i=]

i8-8 e S8 e eetet g8 x = 0.05, i=6

= — 5 aan 40 ROBRE B B 9
m-w x=0.18,i=3

i"! x = 0.25,i=2
Mw = 040, in1

M = 065,10

10 ll}2 I'I]3 ll]4 I.i:l5

Q% GeV?

x = 0.08, i=5
x=0.13, i=4

Quantum Chromodynamics - John Campbell -

17



Factorization

 Just as we saw with the strong coupling, performing calculations in this
formalism beyond the leading order gives us singular predictions.

* Once again we have to absorb the singularities into a redefined quantity - this
time the pdf - in order to recover any predictive power.

* this introduces a new factorization scale, pr.

* Once done, the pdfs are now universal (do not depend on the process) and, in
principle, their evolution calculable at any order in perturbation theory.

 The final form of our factorization theorem is then:

OAB — /dilfadilfb fa/A(xaalu%’) fb/B(’bemu%’> &ab—>X

* |t is worthwhile to remember that this formula has only been proven for a
handful of processes, certainly not for everything in which we are interested.

* nevertheless the success of this approach, in confronting data with
calculations within perturbative QCD, tells its own story.
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Pdfs: general strategy

 Since the Q¢ evolution of the pdfs is known, we just have to determine their
form at some particular value (typically, Qo=17-2 GeV).

Traditional strategy: make an ansatz gi(x) for each of the pdfs at this scale,
with number of free parameters (~20 total). For example:

fi(z,Q5) = Az (1 + bz + Cix) (1 —z)%

Perform a global fit to relevant data, using DGLAP equation to evolve pdfs to
the appropriate scale first. Plenty of room for interpretation:

 choice of input data sets (esp. in cases of conflict);
 order of perturbation theory;

* input parameterization and other theoretical prejudice.

Global fitting industry: a number of groups have been performing and refining
this procedure over the years. Most-used today: CTEQ and MSTW.

Relative newcomers NNPDF with a slightly different approach: use neural
network to remove form/parameter bias, clearer estimate of uncertainties.
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Data set Npts.
H1 MB 99 e p NC 8
H1 MB 97 e7p NC 64
H1 low Q2 96-97 et p NC 80
H1 high Q2 98-99 e~ p NC 126
H1 high Q% 99-00 e=p NC 147
ZEUS SVX 95 e7p NC 30
ZEUS 9697 e7p NC 144
ZEUS 98-99 e p NC 92
ZEUS 99-00 e7p NC 90
H1 99-00 e™p CC 28
ZEUS 99-00 e p CC 30
H1/ZEUS e=p F:‘;‘h“““ 83
H1 9900 e™p incl. jets 24
ZEUS 96-97 e p incl. jets 30
ZEUS 98-00 e=p incl. jets 30
D@ Il pp incl. jets 110
CDF Il pp incl. jets 76
CDF Il W — v asym. 22
DD Il W — [ asym. 10
D®? Il Z rap. 28
CDF Il Z rap. 29
J. Stirling

Example input data: MSTW2008

Data set Npts.
BCDMS up F> 163
BCDMS ud F> 151
NMC pup Fs 123
NMC pd F> 123
NMC pn/up 148
E66S up F> 53
E665 ud F> 53
SLAC ep F> 37
SLAC ed F; 38
NMC/BCDMS/SLAC F,; 31
E866/NuSea pp DY 184
E866/NuSea pd/pp DY 15
NuTeV vN F> 53
CHORUS vN F; 42
NuTeV vN xF; 45
CHORUS vN xF; 33
CCFR vN — pupX 86
NuTeV vN — ppX 84
All data sets 2743

® Red = New w.r.t. MRST 2006 fit.

Quantum Chromodynamics - John Campbell -

20



Example output

MSTW2008

LLL v T |||||||[

Q2 = 10 GeV?-

L1 0iiil e

10~

1L IIIJ.IIJ.

L
0 L 1 sl

10™ 10” 102

gluons very important
at small x (LHC)

CTEQ6.6/MSTW2008 comparison

Gluon distribution at Q% = 10* GeV?

05~ #’**--__// / e
S Jﬁﬁrf..? ;fi//// Z

b | | | A/ 7
1.15 MSTW 2008 NLO (90% C.L.) j 7
b, 7
‘ gr, s CTEQG.6 NLO % /
\ )

§

=
@
o

Ratio to MSTW 2008 NLO

S
S\

IIII|IIImIIII|IIII
S
<

'IlIIlJ

0.85

LS
SN

Il 1 1 IIIIII Il 1 1 IIIIII I'l 1 ] IIIIII
0.8
10 10 107 102

= f

n. —

=
]

Broad agreement between the two
different fits, but differences that
become important when trying to
make precision predictions.
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oy (pb)

PDF differences

NLO

5.4

5.2

4.8

4.6

4.4

0.114

gg—H at the LHC (s =7 TeV) for M =180 GeV

68% C.L. PDF
MSTWO8
CTEQE.6
NNPDF2.0
HERAPDF1.0
ABKMOS

4> H @®

Vertical error bars
Inner: PDF only
Quter: F'I:llF+-c:ucE

| T 7 | | LA | L I L | L
| I | I | :
L1 1 L1 1 L1 1 L1 1 L1 s

uS(Mzz)

» Cross section for a putative Higgs, produced through the gluon-fusion channel
we discussed before, can be particularly sensitive to these differences.

G. Watt

March 2010

Cross section
variation ~ 10%
from pdfs alone

(mostly input &s)
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Price 1o

nay:

iINntroduction of

renorma

Ization

and factorization
scales, Ur and UR
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Scale choices

* The two scales that we have introduced are artefacts of the perturbative
approach: there is no dependence on them in the full theory.

» By truncating at a particular order in perturbation theory, we retain some
dependence upon them.

« formally, the QCD beta function (DGLAP equation) tells us the form of the
renormalization (factorization) scale dependence we should expect;

* in practice, the numerical effect of this dependence may not be small and
varies with the particular calculation at hand.

« Often we argue that these arbitrary scales should be set equal to a typical
mass scale in the process.

* e.g. for inclusive W production, hard to argue with M.
* in presence of additional hard radiation, answer is less clear (pt(jet), 2pT ...)

« Even when we are happy with a “typical scale” on kinematic grounds, one can
always argue about the numerical coefficient in front of it.
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« Consider the single-jet inclusive
distribution at the Tevatron.
At high E7 (i.e. large x) it is
dominated by the quark-antiquark
initial state.

N. Glover, 2002

* We can write the result, up to next-to-leading order (NLO), as follows:

d
= [a2(ur) A + 0 (ur) (B + 200 log(uin/ Br) A — 2Pyq log(ur/ Br) A)

dEr

- ) _ shorthand for
Rfq(r) @ fa(pr). <« convolution with PDF

« The leading order result, A, is proportional to as?.

* At the next order, logarithms of the renormalization and factorization scales
appear (c.f. renormalization discussion before) and are written explicitly here.

« the remainder of the as3 corrections lie in the function B.

Quantum Chromodynamics - John Campbell - 25



Scale dependence: LO

: 1 1 1 1 I 1 I 1 1 I | 1 1 1 I 1 I 1 1 1 1 1 | :
0.8 :
- 0.6 N
w R | —
< C -
\ B —
b N —
© 0.4 :
0.2 T :
0.0 B - | [ N I L1 I L1 I L1

MR/E+

* The distribution at the Tevatron, for ET=100 GeV. The factorization scale is
kept fixed at yur =E7 and the ratio yr/Et varied about a central value of 1.

At this order, the dependence just reflects the running of as. The prediction
varies considerably as ur is changed— normalization of the cross section is
unreliable. This is typical.
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¥ Scale dependence: NLO

d
= |2(ur) A + 3 (ug) (B + 2bo log(pr/Er) A — 2Pgq log(pr /Er) «4)

dEr

@ fo(1r) ® falur).

Now consider dependence of this observable on ur and ur at NLO.

First recall the definition of the beta function and the DGLAP equation for fq.

o das Oos(1r) B 2 3
Ba =npr = T o (un)? + Ofad)
Ofi(1r) - 2
91og 1p — O‘S(MR)qu & fZ(UF) T O(@s)
o do o do
 We th that: — 4 _ 4
omenseotiat ;2| =00 g |agy | =0l

In other words, the NLO result is explicitly independent of the renormalization
and factorization scales, up to terms that are formally higher order.
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Scale dependence: NLO

:l]]]lllll rF 1 1 rm 1 1T 1 llll:

0.87 —

- 0.6 = S
Ll R -
S N~ NLO -
° 0.4 . - - - _ =
0.2 | O _:
0.0-1|||||||||||||||||||||11-

0 1 2 3 4 5

UR/ET

* At NLO, the growth as pr is decreased is softened by the logarithm that
appears with coefficient as3. Resulting turn-over is typical of NLO prediction.

* As a result, the range of predicted values at NLO is much reduced
we obtain the first reliable normalization of the prediction.
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do/dEq

LI B |
—

T —
— —
_— =

!I L1 1 | L1 1 1 | L1 1 1 I I — I L1 1 1

— — — — —— r—— —

0.0
0

1

2

3 4
Vr/Er

Ol

 The NNLO calculation for this process has not been completed, but one can

see the effect of reasonable guesses for the single unknown coefficient.

« would give a first reliable estimate of theoretical error, around a few percent
— this is the level desired (required) for many LHC analyses.
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3 A word of caution

* These scale dependence plots are typical, but not universal.
 The LHC can provide plenty of counter-examples, due to the large gluon pdf.

» Case in point: Wbb production.

o [pb]

150 200

Oll
0 50 100

p [GeV]

Interpretation: expect plenty of jets when
considering the Wbb final state at the LHC
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* Virtual loops that appear beyond leading order contain ultraviolet singularities

» these need to be regularized and then renormalized away, introducing
dependence on an arbitrary renormalization scale, pr.

* this procedure requires the strong coupling to run according to the beta
function, which also determines dependence of an observable on pr.

» Parton distribution functions (pdfs) describe the partonic content of protons.

 the simplest picture is modified by QCD, with pdfs being dependent upon a
mass scale (at which the proton is probed) — DGLAP evolution again.

» calculating beyond leading order we again find singularities that must be
absorbed into a redefinition of the pdfs, introducing factorization scale pr.

* a number of global pdf fits are available: consistent, but details differ.

* At hadron colliders, dependence on the new scales ur and Pr can be large at
leading order.

* generic improvement at higher orders, but not guaranteed.
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