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Tasks for today

• Understand the need for renormalization.

• ultraviolet singularities and the running coupling.

• Understand the importance of factorization.

• overview of parton distribution functions.

• Investigate some phenomenological consequences of the 
renormalization and factorization procedures.

• motivation for higher orders in perturbation theory.
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A simple loop integral

• Take a very simple process at hadron colliders - inclusive jet production.

• Now consider higher order perturbative corrections to this process.

• if we don’t want to change final state all we can do is add internal loops,
e.g.
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example 
diagram for 

gg→gg
amplitude ∼ g2

s ∼ αs

amplitude ∼ (g2
s)2 ∼ α2

s

Feynman rules: integrate over 
unconstrained loop momentum:

p p
!

! + p
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Regularization

• For large loop momenta we have a problem:

• This is called an ultraviolet singularity.

• Regularization is the procedure with which we handle this singularity.

• Obvious solution: cut off all loop integrals at some scale Λ with the 
singularities all now manifest as terms proportional to log(Λ) .

• main problem: not gauge invariant.

• The usual solution nowadays is to use dimensional regularization:
change from the normal 4 to d=4-2ε  dimensions.
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this must be the factor, 
by dimension counting

for ε>0, i.e. less than 4 dim.
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Renormalization

• QCD is a renormalizable theory, which means that these singularities can be 
absorbed into a small number of (infinite) bare quantities.

• any physical observable, computed using the renormalized quantities, is 
then finite.

• In dimensional regularization, we changed the dimensionality of our integral in 
order to render it finite. In order to keep physical observables in four 
dimensions we must introduce a quantity to absorb the extra dimensions, i.e.

• The new quantity µ is the renormalization scale. Renormalized quantities 
depend on µ.

• The singularity is now easily removed by subtraction, but there is ambiguity in 
whether any constant (if any) also goes.
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(p2)−ε

ε
−→ (p2/µ2)−ε

ε
=

1
ε
− log(p2/µ2)

minimal subtraction (MS)just the pole

pole + specific constant MS (“MS-bar”)
___
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Renormalization scale independence

• For a meaningful theory, it must be that any physical observable R is 
independent of the (arbitrary) choice of µ.

• Choose particular observable that depends on a single hard energy scale, Q, 
(e.g. inclusive W production at the LHC: Q = Mw).

• This observable can only depend upon the ratio of the dimensionful scales,
Q/µ, and on the renormalized coupling, 

• Two definitions help to simplify this:
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αs ≡ αs(µ).

dR

dµ
=

(
∂

∂µ
+

∂αs

∂µ

∂

∂αs

)
R = 0

=⇒
(
−(Q/µ2)

∂

∂(Q/µ)
+

∂αs

∂µ

∂

∂αs

)
R = 0

t = log(Q/µ)

(recognizes logarithmic 
derivative in first term)

(parametrizes unknown 
in second term)

beta functionβ(αs) = µ
∂αs

∂µ
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The running coupling

• This has a simple solution if we allow a running coupling, 

• In that case, we can balance the partial derivatives by requiring,

• Differentiating this form of the solution then gives the further relation:

• These two identities ensure that the function                      is also a solution.
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(
− ∂

∂t
+ β(αs)

∂

∂αs

)
R(et,αs) = 0

αs(Q) .

β(αs) =
∂αs

∂t
=⇒ t =

∫ αs(Q)

αs

dx

β(x)

β(αs(Q)) =
∂αs(Q)

∂t
=⇒ ∂αs(Q)

∂αs
=

β(αs(Q))
β(αs)

R(1,αs(Q))

R(Q/µ, αs)

dependence on ren.
scale and bare coupling

R(1,αs(Q))

renormalized coupling,
scale dependence in αs
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The beta function

• The beta function must be extracted from higher order loop calculations,
i.e. in a perturbative fashion.

• At one-loop we find:

• In QCD, the beta-function is negative.

• this is in contrast to QED, where there is no color term, so positive.

• The beta function of QCD has now been computed up to 4 loops

• further perturbative corrections do not change the essential features
of this picture.
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β(αs) = µ
∂αs

∂µ
=

∂αs

∂(log µ)

β(αs) = −b0 α2
s + . . . , b0 =

11Nc − 2nf

6π
nf
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Explicit running

• With this perturbative form, can now solve for the form of the running coupling.

• As Q increases, the denominator
wins and the coupling goes to zero.

• this is asymptotic freedom.

• In the opposite limit the coupling
becomes large.

• our perturbation theory is no
longer reliable.

• suggests onset of confinement
(not yet demonstrated in QCD).
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∂αs

∂(log µ)
= −b0α

2
s =⇒

[
1
αs

]µ=Q

= b0 [log µ]µ=Q

=⇒ αs(Q) =
αs(µ)

1 + αs(µ)b0 log(Q/µ)

S. Bethke, 2009
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Conventions

• It used to be common to write equations for the running coupling in terms of a 
parameter ΛQCD - roughly, the scale at which the coupling becomes large.
At one loop:

• Measurements of the strong coupling suggest ΛQCD  in the range 200-300 MeV.

• Unfortunately the definition of ΛQCD  must change when working at higher 
orders and when including different numbers of light flavors → confusion!

• A better - and now widespread - convention is to refer to the strong coupling at 
a reference scale, usually Mz.

• far away from quark thresholds, well into the perturbative region

• convenient for the many measurements taken on the Z pole at LEP.
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αs(Q) =
αs(µ)

1 + αs(µ)b0 log(Q/µ)
−→ 1

b0 log(Q/ΛQCD)

=⇒ Λ(1−loop)
QCD = Q exp [−1/(b0αs(Q))]



αs(MZ) = 0.1184± 0.0007
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Determinations of αs(Mz)

• Broad agreement between 
different extractions

• many different experiments 
with (mostly) unrelated 
sources of error.
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• Some signs that very recent 
determinations from event shapes 
at LEP may be consistently smaller 
than low-energy extractions.

S. Bethke, 2009
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Partons and protons

• An important consideration, that we have not yet discussed, is that we are in 
the era of hadron colliders.

• We have already seen that the QCD Lagrangian tells us how to describe QCD 
in terms of partons, but struggles with hadrons.
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• A “simple” formalism can be 
introduced to help. 

• It describes the cross section in 
terms of a factorization:

• soft physics describing the  
probability of finding, within a 
proton, a parton with a given 
momentum fraction of proton.

• a subsequent hard scattering 
between partons (well-
described in QCD pert. th.)

σAB =
∫

dxadxb fa/A(xa) fb/B(xb) σ̂ab→X

proton

proton

parton

parton
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Parton distribution functions

• The “probability” functions are parton distribution functions (pdfs): 

• in this simple picture, they are functions of momentum fraction,

• Since they cannot be computed from first principles, they must be extracted 
from experimental data.

• Deep inelastic scattering in ep collisions (HERA) is an ideal environment in 
which to do this.

• pdf (QCD) enters only in
part of the initial state;

• the rest is QED - well-known.

• Valence quark distributions are the
obvious ones. For a proton, u and d.

• Sea quarks are the rest, which one
can think of as being produced from
gluon splitting inside the proton.

13

xa = Ea/EP .

fa/A(xa).
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QCD-improved parton model

• How likely are we to find such a sea quark, with a given momentum fraction?

• The answer of course depends upon how many such branchings have 
occurred within the proton before the hard scattering takes place.

• If this looks familiar, it is - the picture is very much the same as for parton 
showers in the final state.

• The formalism leads to a picture in which the pdfs must also be functions of 
the scale at which they are probed:                            , together with a DGLAP 
equation as before:
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u
u

s

s
_

f(x)→ f(x,Q2)

Q2 ∂f(x,Q2)
∂Q2

=
∫ 1

0
dz

(αs

2π

)
Pab(z)

(
1
z
f(x/z,Q2)− f(x,Q2)

)
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DGLAP revisited

• In this context, the equation is more usefully written in the form:

where the new “plus prescription” is defined by:

• We see that, written in this way, it is clear there can be no singularity as z→1 .
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∂f(x,Q2)
∂ log Q2

=
∫ 1

0

dz

z

(αs

2π

)
[Pab(z)]+ f(x/z,Q2)

∫ 1

0
dz g(z)+f(z) =

∫ 1

0
dz g(z) [f(z)− f(1)]

= CF

∫ 1

0
dz

{(
1 + z2

1− z

)
f(z)−

[
2

1− z
− (1 + z)

]
f(1)

}

∫ 1

0
[Pqq(z)]+ f(z) = CF

∫ 1

0
dz

(
1 + z2

1− z

)
[f(z)− f(1)]

= CF

∫ 1

0

dz

1− z

{
(1 + z2)f(z)− 2f(1)

}
+

3
2
CF f(1)

= CF

∫ 1

0
dz

{
1 + z2

(1− z)+
+

3
2
δ(1− z)

}
f(z)
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Regularized splitting functions

• We have found:

and could derive a similar result for Pgg(z), again containing a δ-function term.

• These are called regularized splitting functions.

• They are often denoted simply by Pab, with the unregularized forms denoted 
by a circumflex (beware my slight abuse of this notation in these lectures).

• The additional δ-function terms correspond to no momentum lost during the 
evolution.

• they are interpreted as
virtual corrections;

• this formalism is thus
often said to include
part of the higher-order
corrections.
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[Pqq(z)]+ = CF

{
1 + z2

(1− z)+
+

3
2
δ(1− z)

}

x

y > x

z =
x

y
xx

evolution by 
branching (z<1)

evolution by virtual 
emission and re-
absorption (z=1)
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Experimental confirmation

• Combination of 
HERA data (H1 
and ZEUS 
experiments) over 
the period from 
1994 to 2000.

• Scaling violation 
predicted in the 
QCD-improved 
parton model is 
clearly visible in 
data.

• Although pdfs are 
not calculable in 
perturbative QCD, 
their evolution is.

17
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Factorization

• Just as we saw with the strong coupling, performing calculations in this 
formalism beyond the leading order gives us singular predictions.

• Once again we have to absorb the singularities into a redefined quantity - this 
time the pdf - in order to recover any predictive power.

• this introduces a new factorization scale, µF.

• Once done, the pdfs are now universal (do not depend on the process) and, in 
principle, their evolution calculable at any order in perturbation theory.

• The final form of our factorization theorem is then:

• It is worthwhile to remember that this formula has only been proven for a 
handful of processes, certainly not for everything in which we are interested.

• nevertheless the success of this approach, in confronting data with 
calculations within perturbative QCD, tells its own story.

18

σAB =
∫

dxadxb fa/A(xa, µ2
F ) fb/B(xb, µ

2
F ) σ̂ab→X
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Pdfs: general strategy

• Since the Q2 evolution of the pdfs is known, we just have to determine their 
form at some particular value (typically, Q0=1-2 GeV).

• Traditional strategy: make an ansatz gi(x) for each of the pdfs at this scale, 
with number of free parameters (~20 total). For example:

• Perform a global fit to relevant data, using DGLAP equation to evolve pdfs to 
the appropriate scale first. Plenty of room for interpretation:

• choice of input data sets (esp. in cases of conflict);

• order of perturbation theory;

• input parameterization and other theoretical prejudice.

• Global fitting industry: a number of groups have been performing and refining 
this procedure over the years. Most-used today: CTEQ and MSTW.

• Relative newcomers NNPDF with a slightly different approach: use neural 
network to remove form/parameter bias, clearer estimate of uncertainties.

19

fi(x,Q2
0) = Aix

a
i

(
1 + bi

√
x + cix

)
(1− x)di
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Example input data: MSTW2008

20J. Stirling
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Example output

21

MSTW2008 CTEQ6.6/MSTW2008 comparison

Broad agreement between the two 
different fits, but differences that 
become important when trying to 
make precision predictions.

gluons very important 
at small x (LHC)
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PDF differences

• Cross section for a putative Higgs, produced through the gluon-fusion channel 
we discussed before, can be particularly sensitive to these differences.

22

G. Watt
March 2010

Cross section 
variation ~ 10% 
from pdfs alone 
(mostly input αs)
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QCD phenomenology: ingredients

• We now have all the ingredients for QCD phenomenology at hadron colliders.
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Feynman rules

(amplitudes)

Phase spaceintegration

Renormalization

(stro
ng

    coupling)

Factorization(pdfs, DGLAP)

Price to pay: 
introduction of 
renormalization
and factorization 
scales, μF and μR
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Scale choices

• The two scales that we have introduced are artefacts of the perturbative 
approach: there is no dependence on them in the full theory.

• By truncating at a particular order in perturbation theory, we retain some 
dependence upon them.

• formally, the QCD beta function (DGLAP equation) tells us the form of the 
renormalization (factorization) scale dependence we should expect;

• in practice, the numerical effect of this dependence may not be small and 
varies with the particular calculation at hand.

• Often we argue that these arbitrary scales should be set equal to a typical 
mass scale in the process.

• e.g. for inclusive W production, hard to argue with Mw.

• in presence of additional hard radiation, answer is less clear (pT(jet), ΣpT ...)

• Even when we are happy with a “typical scale” on kinematic grounds, one can 
always argue about the numerical coefficient in front of it.

24
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Example

• Consider the single-jet inclusive
distribution at the Tevatron.
At high ET (i.e. large x) it is
dominated by the quark-antiquark
initial state.

• We can write the result, up to next-to-leading order (NLO), as follows:

• The leading order result, A, is proportional to αs2.

• At the next order, logarithms of the renormalization and factorization scales 
appear (c.f. renormalization discussion before) and are written explicitly here.

• the remainder of the αs3 corrections lie in the function B.

25

dσ

dET
=

[
α2

s(µR)A + α3
s(µR)

(
B + 2b0 log(µR/ET )A− 2Pqq log(µF /ET )A

)]

⊗fq(µF )⊗ fq̄(µF ). shorthand for 
convolution with PDF

N. Glover, 2002
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Scale dependence: LO

• The distribution at the Tevatron, for ET=100 GeV. The factorization scale is 
kept fixed at µF =ET and the ratio µR/ET varied about a central value of 1.

• At this order, the dependence just reflects the running of αs. The prediction 
varies considerably as µR is changed→ normalization of the cross section is 
unreliable. This is typical.

26
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Scale dependence: NLO

• Now consider dependence of this observable on µF  and µR  at NLO.

• First recall the definition of the beta function and the DGLAP equation for fq.

• We then see that:

• In other words, the NLO result is explicitly independent of the renormalization 
and factorization scales, up to terms that are formally higher order.

27

dσ

dET
=

[
α2

s(µR)A + α3
s(µR)

(
B + 2b0 log(µR/ET )A− 2Pqq log(µF /ET )A

)]

⊗fq(µF )⊗ fq̄(µF ).

β(αs) = µ
∂αs

∂µ
=⇒ ∂αs(µR)

∂ log µR
= −b0αs(µR)2 +O(α3

s)

∂fi(µF )
∂ log µF

= αs(µR)Pqq ⊗ fi(µF ) +O(α2
s)

∂

∂ log µR

[
dσ

dET

]
= O(α4

s) ,
∂

∂ log µF

[
dσ

dET

]
= O(α4

s)
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Scale dependence: NLO

• At NLO, the growth as µR is decreased is softened by the logarithm that 
appears with coefficient αs3. Resulting turn-over is typical of NLO prediction.

• As a result, the range of predicted values at NLO is much reduced
we obtain the first reliable normalization of the prediction.

28

NLO

LO
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Scale dependence: NNLO

• The NNLO calculation for this process has not been completed, but one can 
see the effect of reasonable guesses for the single unknown coefficient.

• would give a first reliable estimate of theoretical error, around a few percent 
→ this is the level desired (required) for many LHC analyses.

29

NNLO
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A word of caution

• These scale dependence plots are typical, but not universal.

• The LHC can provide plenty of counter-examples, due to the large gluon pdf.

• Case in point: Wbb production.
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LO

(a) (b) (c)

Diagrams by MadGraph

u    

     d    

W    

b    
b    

d    

u    

     

u    

     

d    

W    

b    

b    

d    

     

b    

u    

     

d    

W    

b    
b    

d    

     

     

NLO
Interpretation: expect plenty of jets when 

considering the Wbb final state at the LHC
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Recap

• Virtual loops that appear beyond leading order contain ultraviolet singularities

• these need to be regularized and then renormalized away, introducing 
dependence on an arbitrary renormalization scale, µR.

• this procedure requires the strong coupling to run according to the beta 
function, which also determines dependence of an observable on µR.

• Parton distribution functions (pdfs) describe the partonic content of protons.

• the simplest picture is modified by QCD, with pdfs being dependent upon a 
mass scale (at which the proton is probed) → DGLAP evolution again.

• calculating beyond leading order we again find singularities that must be 
absorbed into a redefinition of the pdfs, introducing factorization scale µF.

• a number of global pdf fits are available: consistent, but details differ.

• At hadron colliders, dependence on the new scales µR and µF can be large at 
leading order.

• generic improvement at higher orders, but not guaranteed.
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