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Strange Quarks in the Nucleon

@ @ Nucleons are composed of three up and down valence quarks

@ e These quarks account for small percent of nucleon mass

Gluons that bind the quarks carry remainder of the mass
e The gluons can split into short lived quark-antiquark
pairs (sea quarks)
e Sea quarks are mostly up and down, but there are
also strange-antistrange pairs
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Strange Quark Contribution to Nucleon Spin

We want to know the total contribution to the nucleon spin that comes from
the spin of strange quarks and antiquarks (As)

As = (sT +5") — (st +5%)

e The up and down quark contributions (Au and Ad) are fairly well known

This value was expected to be zero
e Found to be negative in polarized, charged-lepton, DIS
e Analyses give range As = —0.08 to —0.14
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Neutral-Current Elastic Scattering

The neutral-current elastic (NCE) neutrino- @

nucleon cross section depends on the form : \/
factors GIY©, G and GY _

e Represent the spin, electric, and Nz
magnetic distributions of the nucleon

\
\

e Each form factor can be separated in
terms of individual quark contribution e

If we extrapolate G to zero, we get

GNC(Q*=0)= —Au+ Ad+ As

e Au — Ad has been determined in neutron decay
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Experimental NCE Measurements of As

NCE measurement from the E734 neutrino scattering experiment at BNL
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e Measured NCE v — p interactions down to
Q? = 0.45 GeV?

e Found As = —0.12 £ 0.07
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NCE v — p measurement in MicroBooNE
e Measure the ratio of neutral-current elastic to charged-current
quasi-elastic events

e Reduce uncertainty from beam flux, detector efficiency, nuclear effects, and
final state interactions

e The signal for a NCE v — p interaction in MicroBooNE is a single proton

e We will be able to detect protons that traverse as few as five wires (1.5 cm)
e Corresponds to a NCE interaction with Q% = 0.08 GeV?
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LArSoft Reconstructed Tracks

We first get reconstructed TPC tracks from LArSoft (Liquid Argon Software)
e There is a series of algorithms that create these tracks

@ Hit finding: Fit gaussians to deconvolved waveform peaks

w/xww_«/\w_

® Cosmic track finding:

e Combine hits from step (1) into tracks
e Use cosmic tagging algorithm to remove cosmic-like tracks
e Return set of hits that are not associated with cosmic tracks

® Neutrino track finding:

e Combine hits from step (2) into tracks

e Return set of neutrino event-like tracks

e The current neutrino-finding algorithm finds ~50% of simulated proton
tracks — this efficiency is rapidly improving

e The next step is to identify which tracks are protons
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Gradient-Boosted Decision Trees

Decision tree:
series of if/else statements

e Input an event (collection of
physical features)

e Output a class (0 or 1)

Gradient-boosting:
Each new tree trains on the the error of the previous tree
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Building the Gradient-Boosted Decision Trees

We are using four classifiers

e proton vs. muon, proton vs. pion, proton vs. electron/photon, proton vs.
cosmic
e protons, muons, pions, electrons, and photons are neutrino-event like
e cosmics are any type of cosmic induced tracks
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Performance on Training Set

To train, we used 99,940 simulated neutrino events and 32,428 real cosmic
events in MicroBooNE

MicroBooNE Simulation

MicroBooNE Simulation
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e “Proton Score” is the log-odds of a track being from a proton
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Performance on Test Set

Tested the trained classifiers on a set of 40,864 simulated neutrino and
simulated cosmic events

MicroBooNE Simulation
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Proton Score

e Can choose a score cut to optimize efficiency or purity

e As an example, we chose a score cut of 4.6 to get a high-purity set
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Score Cut to Maximize Purity

Required a track score of at least 4.6 for all four classifiers
MicroBooNE Simulation
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e Efficiency of BNB protons: 10%
(20% BDT efficiency 50% reconstruction efficiency)
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Example Event from Test Set

e Event display of simulated E . . = = =
neutral-current elastic e B MicroBooNE
proton from test set that = e Simolation
passed the cuts = —l

E Wire

e This is a 120 MeV kinetic ) M//;:

energy simulated proton o ‘ ' ‘ T
= . :

e Reconstructed length is o < NS

11 cm " > =
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Running on Data

e Examples of proton candidates in real BNB data
e Chose a run with 3,903 triggered events
e Used the same 4.6 score cut to get pure sample
e Five tracks passed all cuts

Possible NCE v — p event in MicroBooNE
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Conclusion

e The polarization of the strange quarks in the nucleon
is an open question

e MicroBooNE has the ability to measure As in
neutral-current elastic scattering

e The signal is a single short proton track

e A combination of LArSoft algorithms for track reconstruction and
boosted decision trees for particle I.D. is a promising route

e We will soon be able to use this method to identify neutral-current elastic
events (and others) in MicroBooNE

Thank you!

New Mexico State University 14/16



Back up slides
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e Plot shows 1987 EMC results that Ellis-Jaffe sum f e bsenn |
rule is violated [
e Ellis-Jaffe sum rule assumes As = 0 and SU(3) - |
flavor symmetry is valid '
e As should be checked using alternate methods
not assuming SU(3)
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o Attempts to measure As in semi-inclusive DIS scattering of
charged-leptons off of protons gave results consistent with zero
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