
Gordan Krnjaic 

New Perspectives 2016 

 Theory @ Fermilab:
 A Lightning* Survey

*hopelessly inadequate & incomplete

Patrick Fox, Bogdan Dobrescu, Dan Hooper, Christopher Hill, 
Roni Harnik, Marcela Carena, Andreas Kronfeld, Stephen Parke, 

Paul Mackenzie, Ruth Van de Water,  John Campbell, Chris 
Quigg, Scott Dodelson, Albert Stebbins, Walter Giele, Estia 
Eichten, William Bardeen, Kiel Howe, John Kearney, Elise 

Jennings,  Ishrad Mohammed, Pilar Coloma, Ran Zhou, Ye Li, 
Seyda Ipek, Aarti Raghuraman, Zhen Liu 

1



Nature of  EWSB

Matter asymmetry

Neutrino masses, mixings, interactions  

Flavor puzzle (CKM structure)

Outstanding Problems in  
Fundamental Physics 

Identity of  dark matter

How to make progress?
new models + new searches + better calculations

Strong CP problem

2



CMB

Gravitational 
lensing

Cluster 
collisions

Rotation 
Curves

Bulge
Disk

Halo
(Dark Matter)

What is its particle nature?

Dark Matter 

How to discover it?
3



DM Model Building
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FIG. 2. The black contours represent the regions of the mX � ✏ plane in which the dark matter density is equal to the measured
cosmological abundance, for three values of the hidden sector interaction strength, ↵X , and for mZ0 = mX/20. In the left panel,
we adopt equal initial temperatures for the hidden and visible sectors, ⇠inf ⌘ (Th/T )inf = 1. In the right panel, we instead
assume that the universe was highly dominated by the hidden sector after inflation, ⇠inf = 10. In each panel, the red and
blue regions are excluded by direct detection and BBN constraints, respectively. In and above the orange and yellow regions,
the hidden and visible sectors are in kinetic equilibrium during dark matter freeze-out, or the Z0 population decays before the
freeze-out of X, respectively. In and above the brown region, the Z0 population never dominates the energy density of the
universe, and thus does not significantly dilute the dark matter relic abundance. In contrast to the case of a standard thermal
relic, dark matter from a decoupled sector can be as heavy as ⇠1-100 PeV without being overproduced in the early universe.

this case, the energy density of the universe will remain
dominated by the hidden sector until the Z 0 population
decays, thereby generating the SM bath. In the ⇠inf � 1
limit, the final abundance of DM is approximately given
by:
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This allows for an acceptable X abundance, without vi-
olating the constraints from BBN, for masses as high as:

mX <⇠ 40PeV

✓
↵X

0.3

◆2 ✓
10

mX/mZ0

◆
, (14)

where we have taken g⇤ ⇡ 10 near BBN temperatures.
If we select a value of ↵X that saturates the unitarity
bound [51], this scenario allows for DM as heavy asmX ⇠
5EeV ⇥ [10/(mX/mZ0)].

In this letter, we have considered a class of scenarios
in which the DM resides within a heavy sector that is
highly decoupled from the Standard Model. When the
temperature falls below the mass of the lightest hidden
sector particle, this long-lived state is expected to rapidly
come to dominate the energy density of the universe, ul-
timately heating the visible sector and diluting the DM
abundance through its decay. In contrast to conventional

WIMPs, DM candidates as heavy as ⇠1-100 PeV can
be thermal relics of a decoupled hidden sector, without
being overproduced in the early universe. Although we
have focused on a particular vector portal model in this
letter, we emphasize that similar phenomenology can ap-
pear within the context of other DM models with a heavy
hidden sector.
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Extends viable thermal DM mass range

Full treatment neutral state mixing
Connection to LHC diboson excess 
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Figure 2. Phenomenology of singlet-bidoublet dark matter. Along the solid black contours, the
thermal relic abundance is in agreement with the measured cosmological dark matter density (⌦�h2 =
0.12). Also shown as dashed grey lines are contours of constant dark matter mass (as labeled). In
each frame, we have adopted gR = 0.45 and mW 0 = 1.9 TeV in order to match the rate and energy
of the diboson excess, and tan� = 2 to accommodate the required W 0 ! WZ branching fraction.
The red shaded regions are currently excluded by LUX, whereas the blue regions are predicted to
fall within the reach of LZ. The green shaded regions are those in which the W 0 decays to particles
residing within the dark matter sector with a branching fraction greater than 10%.

region of parameter space analogous to the A-funnel in the MSSM is found nearm�1 ⇡ mA/2.
This is related to our choice of Yukawa structure in Eq. (2.8). In regions of parameter space
with a light and mostly singlet dark matter candidate and a relatively light pseudoscalar
Higgs, it may be possible to generate the Galactic Center gamma-ray excess [46–51] in this
model, similar to as in the models described in Refs. [52, 53]. Furthermore, depending on the
sign of tan ✓, singlet mixing allows for enhanced annihilations through heavy scalars when
m�1 ⇠ MS ⇠ MB. If, on the other hand, the heavy Higgses are decoupled, proper freeze-out
favors regions where �

1

is predominantly bidoublet-like, and annihilations involving heavy

– 11 –
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New DM Searches
Light DM: production in Main Injector, scattering at NOvA 
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Light DM beam @ LBNF
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Figure 7. Expected sensitivity (at 90% C.L., 2 d.o.f.) to a DM fermion that interacts

with quarks via a flavor-universal Z 0 boson of mass M
Z

0 and coupling g
z

, for a DM U(1)
B

charge z
�

= 3. The solid black line shows the sensitivity for a MiniBooNE-like detector at

the optimal location from the NuMI target (see Fig. 6), while the dashed black line shows

the sensitivity for a detector placed at the MiniBooNE/MicroBooNE site. The shaded areas

are ruled out (see Sec. 2).

searches at BaBar (yellow); and J/ (green) and ⌥ (blue) invisible decay searches, as

discussed in Sec. 2.

For simplicity, no systematic errors have been considered when obtaining the �2

contour. These will depend on the detector performance, cross section uncertainties,

flux uncertainties at the detector location, etc.. Nevertheless, due to the strong depen-

dence of the signal event rates with the coupling (S ⇠ g

6
z

, see Sec. 3), we expect the final

�

2 contour to remain largely una↵ected by background normalization uncertainties. A

larger e↵ect could come from the detector performance parameters (detection e�cien-

cies, for instance), since the sensitivity of the experiment in this scenario would be

largely limited by statistics. A more careful study by the experimental collaborations

is therefore needed to determine the final sensitivity for the search proposed here.
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Figure 1. Constraints on the U(1)B (left panel) and U(1)ds (right panel) models from

monojet collider searches (upper right-hand region), collider bounds on new fermions required

to cancel gauge anomalies (upper left-hand corner), and quarkonium decays (regions labelled

by J/ and ⌥). The ragged (gray) region in the center of the left panel is due to fluctuations

in the BaBar monophoton search.

3 Viable DM scenarios

Let us outline some possible scenarios which give rise in our framework to a viable DM

candidate. Since we are interested in DM of mass m� below a few GeV, direct detection

bounds are currently very mild [49–51].

The most stringent constraint is provided by the bounds on energy injection around

redshifts z ⇠ 100�1000, coming from observations of the cosmic microwave background

(CMB) [52–55]. This constrains the annihilation of DM into charged SM particles

during recombination, and in particular rules out DM lighter than about 10 GeV if

it annihilates via s-wave processes. Therefore, CMB forces the dominant annihilation

to be p-wave suppressed or to go into neutrinos. In our scenario a Dirac fermion  �

annihilates into quarks via s-wave processes, and the thermal averaged cross section

– 8 –
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New DM Searches
Light DM @ Electron Fixed Target Experiments 

Eder Izaguirre, GK, Philip Schuster, Natalia Toro arXiv:  1411.1404 & 1505.00011  1
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New Electron Beam-Dump Experiments to Search for MeV to few-GeV Dark Matter

Eder Izaguirre, Gordan Krnjaic, Philip Schuster, and Natalia Toro
Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada

(Dated: July 26, 2013)

In a broad class of consistent models, MeV to few-GeV dark matter interacts with ordinary matter
through weakly coupled GeV-scale mediators. We show that a suitable meter-scale (or smaller) de-
tector situated downstream of an electron beam-dump can sensitively probe dark matter interacting
via sub-GeV mediators, while B-factory searches cover the 1–5 GeV range. Combined, such exper-
iments explore a well-motivated and otherwise inaccessible region of dark matter parameter space
with sensitivity several orders of magnitude beyond existing direct detection constraints. These ex-
periments would also probe invisibly decaying new gauge bosons (“dark photons”) down to kinetic
mixing of ✏ ⇠ 10�4, including the range of parameters relevant for explaining the (g � 2)

µ

discrep-
ancy. Sensitivity to other long-lived dark sector states and to new milli-charge particles would also
be improved.

I. INTRODUCTION AND SUMMARY

Dark matter is sharp evidence for physics beyond the
Standard Model, and may be our first glimpse at a
rich sector of new phenomena at accessible mass scales.
Whereas vast experimental programs aim to detect or
produce few-GeV-to-TeV dark matter [1–12], these ex-
periments are essentially blind to dark matter of MeV-
to-GeV mass. We propose an approach to search for
dark matter in this lower mass range by producing it in
an electron beam-dump and then detecting its scatter-
ing in a small downstream detector (Fig. 1). This ap-
proach can explore significant new parameter space for
both dark matter and light force-carriers decaying invisi-
bly, in parasitic low-beam-background experiments at ex-
isting facilities. The sensitivity of this approach comple-
ments and extends that of analogous proposed neutrino
factory searches [13–16]. Combined with potential B-
factory searches, these experiments would explore a well-
motivated and otherwise inaccessible region of dark mat-
ter parameter space. Experiments of this type are also es-
sential to a robust program searching for new kinetically
mixed gauge bosons, as they complement the ongoing
searches for such bosons’ visible decays [13, 14, 17–37].

Various considerations motivate dark matter candi-
dates in the MeV-to-TeV range. Much heavier dark mat-
ter is disfavored because its naive thermal abundance ex-
ceeds the observed cosmological matter density. Much
beneath an MeV, astrophysical and cosmological con-
straints allow only dark matter with ultra-weak couplings
to quarks and leptons [38]. Between these boundaries
(MeV � TeV), simple models of dark matter can ac-
count for its observed abundance through either thermal
freeze-out or non-thermal mechanisms [39–54]. The con-
ventional argument in favor of weak-scale (& 100 GeV)
dark matter — that its annihilation through Standard
Model (SM) forces alone su�ces to explain the observed
relic density — is dampened by strong experimental con-
straints on dark matter with significant couplings to the
Z or Higgs bosons [12, 55] and by the absence to date of
evidence for new SM-charged matter at the LHC.

The best constraints on multi-GeV dark matter inter-
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FIG. 1: Schematic experimental setup. A high-intensity
multi-GeV electron beam impinging on a beam dump pro-
duces a secondary beam of dark sector states. In the basic
setup, a small detector is placed downstream so that muons
and energetic neutrons are entirely ranged out. In the con-
crete example we consider, a scintillator detector is used to
study quasi-elastic �-nucleon scattering at momentum trans-
fers ⇠> 140 MeV, well above radiological backgrounds, slow
neutrons, and noise. To improve sensitivity, additional shield-
ing or vetoes can be used to actively reduce cosmogenic and
other environmental backgrounds.
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FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

FIG. 1: Schematic experimental setup. A high-intensity
multi-GeV electron beam impinging on a beam dump pro-
duces a secondary beam of dark sector states. In the basic
setup, a small detector is placed downstream so that muons
and energetic neutrons are entirely ranged out. In the con-
crete example we consider, a scintillator detector is used to
study quasi-elastic �-nucleon scattering at momentum trans-
fers ⇠> 140 MeV, well above radiological backgrounds, fast
neutrons, and noise. Similar layouts with much smaller detec-
tors or shorter target-detector distances than shown above are
similarly sensitive. To improve sensitivity, additional shield-
ing or vetoes can be used to actively reduce high energy cos-
mogenic and other environmental backgrounds.

actions are from underground searches for nuclei recoiling
o↵ non-relativistic dark matter particles in the Galactic
halo (e.g. [1, 2, 5–9, 12]). These searches are insensi-
tive to few-GeV or lighter dark matter, whose nuclear
scattering transfers invisibly small kinetic energy to a re-
coiling nucleus. Electron-scattering o↵ers an alternative
strategy to search for sub-GeV dark matter, but with
dramatically higher backgrounds [56–58]. If dark matter
scatters by exchange of particles heavier than the Z, then
competitive limits can be obtained from hadron collider
searches for dark matter pair-production accompanied by
a jet, which results in a high-missing-energy “monojet”
signature [9, 10]. But among the best motivated models
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FIG. 1. Constraints and projections for representative vector-portal DM scenarios. For definiteness, we evaluate all constraints for
mDM/mA0 = 1/3 and (except for the LSND⇥SIDM bound – see below), ↵D = 0.5, near the perturbativity limit. The relic density,
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mDM/mA0 = 1/3 (solid curves) and 1/10 (dot dashed). A detailed discussion of these constraints and their scaling with y can be found in
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tion cross section at relative velocity vrel ⌧ c is

�vrel =
8⇡

3

✏2↵↵
D

m2
'

v2rel
(m2

A

0 � 4m2
'

)2 +m2
A

0�2
, (2)

where � is the A0 width. In the limit m
A

0 � m
'

,�, this
cross-section depends on dark-sector parameters only through

the DM mass m
'

and the dimensionless combination

y ⌘ ✏2↵
D

✓
m

'

m
A

0

◆4

, (3)

so matching the ' relic abundance to the observed DM den-
sity essentially fixes y as a function of m

'

(models with larger
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Lattice QCD 

Supercomputer calculations of  nonperturbative effects in QCD

FNAL: Andreas Kronfeld, Ruth van de Water, Paul Mackenzie, Ran Zhou

12. CKM quark-mixing matrix 15
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Figure 12.2: Constraints on the ρ̄, η̄ plane. The shaded areas have 95% CL.

and the Jarlskog invariant is J = (3.06+0.21
−0.20) × 10−5.

Figure 12.2 illustrates the constraints on the ρ̄, η̄ plane from various measurements
and the global fit result. The shaded 95% CL regions all overlap consistently around the
global fit region.

12.5. Implications beyond the SM

The effects in B, Bs, K, and D decays and mixings due to high-scale physics
(W , Z, t, H in the SM, and unknown heavier particles) can be parameterized by
operators composed of SM fields, obeying the SU(3) × SU(2) × U(1) gauge symmetry.
Flavor-changing neutral currents, suppressed in the SM, are especially sensitive to beyond
SM (BSM) contributions. Processes studied in great detail, both experimentally and
theoretically, include neutral meson mixings, B(s) → Xγ, Xℓ+ℓ−, ℓ+ℓ−, K → πνν̄,
etc. The BSM contributions to these operators are suppressed by powers of the scale
of new physics. Already at lowest order, there are many dimension-6 operators, and
the observable effects of BSM interactions are encoded in their coefficients. In the SM,
these coefficients are determined by just the four CKM parameters, and the W , Z, and
quark masses. For example, ∆md, Γ(B → ργ), Γ(B → πℓ+ℓ−), and Γ(B → ℓ+ℓ−) are all
proportional to |VtdVtb|2 in the SM, however, they may receive unrelated contributions

August 29, 2014 13:59
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Figure 9.4: Summary of measurements of αs as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).
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17.2. Methods and status

Once the lattice action is chosen, it is straightforward to define the quantum theory
using the path integral formulation. The Euclidean-space partition function is

Z =

∫

[dU ]
∏

f

[dqf ][dq̄f ]e−Sg [U ]−
∑

f q̄f (D[U ]+mf )qf , (17.4)

where link variables are integrated over the SU(3) manifold, qf and q̄f are Grassmann
(anticommuting) quark and antiquark fields of flavor f , and D[U ] is the chosen lattice
Dirac operator with mf the quark mass in lattice units. Integrating out the quark and
antiquark fields, one arrives at a form suitable for simulation:

Z =

∫

[dU ]e−Sg[U ]
∏

f

det(D[U ] + mf ) . (17.5)

The building blocks for calculations are expectation values of multi-local gauge-invariant
operators, also known as “correlation functions”,

⟨O(U, q, q̄)⟩ = (1/Z)

∫

[dU ]
∏

f

[dqf ][dq̄f ]O(U, q, q̄)e−Sg [U ]−
∑

f q̄f (D[U ]+mf )qf . (17.6)

If the operators depend on the (anti-)quark fields qf and q̄f , then integrating these fields
out leads not only to the fermion determinant but also, through Wick’s theorem, to a
series of quark “propagators”, (D[U ] + mf )−1, connecting the positions of the fields.

This set-up allows one to choose, by hand, the masses of the quarks in the determinant
(the sea quarks) differently from those in the propagators (valence quarks). This is called
“partial quenching”, and, as noted above, is used by some calculations as a way of
obtaining more data points from which to extrapolate both sea and valence quarks to
their physical values.

17.2.1. Monte-Carlo method :

Since the number of integration variables U is huge (N3
s × Nt × 4 × 9), direct

numerical integration is impractical and one has to use Monte-Carlo techniques. In
this method, one generates a Markov chain of gauge configurations (a “configuration”
being the set of U ’s on all links) distributed according to the probability measure
[dU ]e−Sg[U ] ∏

f det(D[U ] + mf ). Once the configurations are generated, expectation
values ⟨O(U, q, q̄)⟩ are calculated by averaging over those configurations. In this way
the configurations can be used repeatedly for many different calculations, and there are
several large collections of ensembles of configurations (with a range of values of a, lattice
sizes and quark masses) that are publicly available through the International Lattice Data
Grid (ILDG). As the number of the configurations, N , is increased, the error decreases as
1/

√
N .

The most challenging part of the generation of gauge configurations is the need to
include the fermion determinant. Direct evaluation of the determinant is not feasible,
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Õq
1 = b̄↵�µRq↵ b̄��µRq�, (2.4f)

Õq
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Calculate CKM ratio

enable model-specific predictions related to mixing. More precise mixing matrix elements,
of course, provide stronger new-physics constraints.

In the Standard Model, both�Mq and��q receive contributions from higher-dimensional
operators beyond those in Eq. (2.4) that are not considered in this work. Corrections to the
OPE used to derive Eq. (2.9) are negligible, because they are suppressed by m2

b/m
2
W . For

��q, however, a second OPE, the so-called heavy-quark expansion [61], is needed to obtain a
Standard-Model prediction in terms of local operators, yielding a joint power series in ⇤/mb

and ↵s. At leading order in the heavy-quark expansion, the Standard-Model expression for
��q depends only on hOq

1i and either hOq
2i or hOq

3i. At O(1/mb), however, ��q also receives
contributions from the matrix elements hOq

4,5i. Further, at this order, matrix elements of
dimension-seven operators not calculated in this work enter ��q; their contributions are
numerically larger than those from the local matrix elements hOq

4,5i, and their uncertainties,
after the reduction of errors on hOq

1,2,3i in this work, are the dominant source of error in the
Standard-Model width di↵erences [66].

Certain combinations of the hadronic matrix elements hOq
i i are especially useful for phe-

nomenology. As discussed in the previous section, the theoretical uncertainties on hOq
1i are

currently much larger than the experimental errors on �Mq, and therefore limit the pre-
cision with which one can obtain the CKM combinations |V ⇤

tqVtb|. Many of the theoretical
errors cancel, however, in the ratio ⇠, defined as

⇠2 =
f 2
B

s

B̂
(1)
B

s

f 2
B

d

B̂
(1)
B

d

, (2.10)

thereby enabling a determination of the CKM-element ratio |Vtd/Vts| from the corresponding
ratio of mass di↵erences: ����

Vtd

Vts

����
2

= ⇠2
�Md

�Ms

MB
s

MB
d

(2.11)

that better leverages the experimental precision.
For Standard-Model calculations of the decay-width di↵erences, it is useful to define the

1/mb-suppressed combination hRq
0i [65]

hRq
0i(µ) = 2↵2(µ)hOq

1i(µ) + 4hOq
2i(µ) + 4↵1(µ)hOq

3i(µ). (2.12)

The coe�cient functions ↵1,2(µ) are known at next-to-leading order (NLO) in QCD [67] and
are given in Eqs. (9.4)–(9.5) of Sec. IX. Because the leading contributions in the heavy-quark
expansion cancel by construction in the combination in Eq. (2.12), the calculation of hRq

0i
su↵ers from a larger uncertainty than for the individual matrix elements hOq

1,2,3i.
Finally, the decay-width di↵erences are often parameterized in terms of the ratios of ma-

trix elements hOq
i i/hO

q
1i (i=2–5) because the theoretical uncertainties are reduced. These

same ratios can also contribute to the mass di↵erences in theories beyond the Standard
Model. Hence they are useful for Standard-Model and BSM calculations of the ratio
��q/�Mq, as well as for predictions of Bq-mixing observables in new-physics scenarios
relative to their Standard-Model values.

III. LATTICE SIMULATION

Here we summarize the details of the numerical simulations. First, in Sec. III A, we
describe the ensembles of gauge-field configurations and the light- and valence-quark actions

7
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Figure 1. One- and two-dimensional projections of the MCMC results for the DUNE experiment
onto all planes involving the moduli of NSI parameters. The red, green and blue lines indicate the
credible regions at 68%, 90% and 95%. The vertical green bands indicate the credible intervals
at 68%. No previous constraints on NSI parameters have been considered in this figure. The
parameters not shown have been marginalized over, see text for details.

and marginalized over. Similar projections for the standard oscillation parameters can be

found in App. A, see Fig. 7.

Several features can be observed from Fig. 1. Most notably, two important degeneracies

appear in the sensitivities: the first a↵ects the determination of "̃µµ, while the second

degeneracy is observed in the "̃ee � "⌧e plane. We will discuss these degeneracies in more

detail in Sec. 4.2. A second important conclusion that can be derived from Fig. 1 is that

DUNE will already be able to explore the LMA dark solution at more than 90% CL.

This can be observed in the leftmost column in Fig. 1, where the range of values of "̃ee
compatible with the LMA-dark solution are disfavoured at more than 90%. We will return

to this point again in Sec. 4.2.
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the flavour basis3, as:

i
d

dt

0

B@
⌫e
⌫µ
⌫⌧

1

CA =

2

64U

0

B@
0 0 0

0 �21 0

0 0 �31

1

CAU † +A

0

B@
1 + "ee "eµ "e⌧
"⇤eµ "µµ "µ⌧
"⇤e⌧ "⇤µ⌧ "⌧⌧

1

CA

3

75

0

B@
⌫e
⌫µ
⌫⌧

1

CA , (2.2)

where �ij = �m2
ij/2E, U is the lepton flavor mixing matrix, A ⌘ 2

p
2GFne and "↵� ⌘

(1/ne)
P

f,P nf ✏
fP
↵� , with nf the f -type fermion number density and GF the Fermi coupling

constant. The three diagonal entries of the modified matter potential in Eq. 2.2 are real

parameters, while the o↵-diagonal parameters are generally complex.

Since a diagonal contribution can be subtracted to the whole Hamiltonian, neutrino

oscillations will only be sensitive to two of the diagonal parameters. We will consider the

combinations "̃ee ⌘ "ee � "⌧⌧ and "̃µµ ⌘ "µµ � "⌧⌧ , obtained after subtracting ✏⌧⌧ ⇥ I from

the Hamiltonian. The three complex NSI parameters "eµ, "e⌧ and "µ⌧ will be parametrized

as "↵� = |"↵� |e�i�↵� .

Due to the requirement of SM gauge invariance, in principle any operators responsible

of neutrino NSI would be generated simultaneously with analogous operators involving

charged leptons [2, 42–44]. Thus, the tight experimental constraints on charged lepton

flavor violating processes can be automatically applied to operators giving NSI, rendering

the e↵ects unobservable at neutrino experiments. However, there are ways in which the

charged lepton constraints can be avoided, e.g., if the NSI are generated through operators

involving the Higgs, or from interactions with a new light gauge boson, see e.g., Refs. [2,

42, 43, 45]. At this point, however, model dependence comes into play. In the present work,

we will explore how much the current bounds can be improved from a direct measurement

at neutrino oscillation experiments, without necessarily assuming the viability of a model

which can lead to large observable e↵ects.

Direct constraints on NSI can be derived either from4 scattering processes [43, 48–

50] or from neutrino oscillation data [51–54]. Currently, the strongest bounds for NSI

in propagation come from the global fit to neutrino oscillation data in Ref. [54]. At the

90% CL, most constraints on the e↵ective " parameters are around ⇠ O(0.05 � 0.1). An

exception to this is "̃ee, for which only O(1) can be derived from current data.

An important conclusion derived from the global fits performed in Refs. [51–54] is the

presence of strong degeneracies in the data. In presence of NSI in propagation, global

analyses of neutrino oscillation data are fully compatible with two solutions:

the LMA solution: the standard Large Mixing Angle (LMA) solution corresponds to

mixing angles fully compatible with the results obtained from a global fit to neutrino

oscillation data in absence of NSI. The results are fully compatible with the hypothesis

3 If production or detection NSI were present, though, the e↵ective production and detection flavour

eigenstates would not coincide with the standard flavour ones [41]. However, for simplicity we will consider

in this work that no significant NSI a↵ecting production or detection are present.
4Stronger limits can be derived from mono-jet and multi-lepton constraints at colliders [46, 47]. However,

these bounds are somewhat model-dependent and, in particular, fade away for models where the NSI come

from interactions via a new light mediator.

– 4 –

i.e., T2K [21] and NOvA [22]. Finally, we will also compare its reach to a proposed future

neutrino oscillation experiment with much larger statistics but a much shorter baseline, to

illustrate the importance of the long-baseline over the size of the event sample collected.

As an example, we will consider the reach of the T2HK experiment [23].

The impact of NSI in propagation at long-baseline experiments has been studied ex-

tensively in the literature, see Refs. [24–32] for an incomplete list, or see Refs. [33, 34] for

recent reviews on the topic. In particular, the reach of the LBNE experiment (very similar

to the DUNE setup considered in this work) was studied in Ref. [35]. However, this study

was performed under the assumption of a vanishing ✓13, and only one non-standard pa-

rameter was switched on at a time. In the current work, we will follow the same approach

as in Ref. [32]: all NSI parameters are included at once in the simulations, in order to

explore possible correlations and degeneracies among them. As we will see, this will reveal

two important degeneracies, potentially harmful for standard oscillation analyses.

The recent determination of ✓13 also has important consequences for the sensitivity to

NSI parameters. On one hand, the large value of ✓13 makes it possible for the interference

terms between standard and non-standard contributions to the oscillation amplitudes to

become relevant (see, e.g., Ref. [36] for a recent discussion). In addition, the value of ✓13
has now been determined to an extremely good accuracy by reactor experiments [37–39],

while the current generation of long-baseline facilities expects to significantly improve the

precision on the atmospheric parameters in the upcoming years [40]. At the verge of the

precision Era in neutrino experiments, it thus seems appropriate to reevaluate the sensitiv-

ity of current and future long-baseline experiments to NSI parameters and, in particular,

of the DUNE proposal.

The paper is structured as follows. In Sec. 2 we introduce the NSI formalism; Sec. 3

describes the simulation procedure and the more technical details of the experimental

setups under study; Sec. 4 summarizes our results, and we present our conclusions in

Sec. 5. Finally, App. A contains some more technical details regarding the implementation

of previous constraints on the oscillation parameters in our simulations.

2 The formalism of NSI in propagation

NSI a↵ecting neutrino propagation (from here on, we will refer to them simply as NSI)

take place through the following four-fermion e↵ective operators:

�LNSI = �2
p
2GF

X

f,P

✏fP↵� (⌫↵�
µPL⌫�)

�
f�µPf

�
, (2.1)

where GF is the Fermi constant, f = u, d, e stands for the index running over fermions in

the Earth matter, P stands for the projection operators PL ⌘ 1
2(1� �5) or PR ⌘ 1

2(1+ �5),

and ↵,� = e, µ, ⌧ . From neutrino oscillations we have no information on the separate

contribution of a given operator with coe�cient "fP↵� , but only on their sum over flavours

and chirality. The e↵ects of these operators appear in the neutrino evolution equation, in

– 3 –
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Strong CP Problem

2

While the OEDM appears above to be proportional
to θ(t), there is, however, a catch: In the limit that
∂tθ(t) → 0 (decoupling limit) the perturbative Feynman
diagrams involving the anomaly must vanish. But how
do we reconcile decoupling, i.e., derivative coupling of
the axion, from a hard dependence upon θ(t)?

The decoupling of the axion at zero mass is subtle.
We will see presently that a nontrivial nonlocal term is
generated by Fig.(1) that enforces the decoupling. This
nonlocality is remniscent of the “transverse current” that
arises in radiation gauge quantization of QED (see, e.g.,
section 6.3 of ref.[6]). The nonlocal term insures that
the action, S(θ, Fµν , ...) can be brought to the form
S′(∂µθ, Aν , ...)+(total divergence), where Fµν = ∂[µAν].
This is a subtle property shared with the anomaly it-
self whereby the manifestly gauge invariant form of S
does not display the axion derivative coupling. However,
upon integration by parts we can display the derivative
coupling of the axion, as in S′, while relinquishing mani-
fest gauge invariance. Since these actions are equivalent
up to a total divergence, both the shift symmetry of the
axion and the gauge invariance of QED remain valid in
perturbation theory. Displaying the action as in S and
taking the zero recoil limit of the electron, which is kine-
matically valid in the me >> ma limit, we obtain eq.(1).
The price we pay for this symmetry is the nonlocality of
the effective EDM action of the electron. The structure
of the action is, however, determined completely by this
symmetry, as we discuss in Section(III).

Indeed, nonlocality arises even in the familiar case of
a classical axion induced RF cavity mode. There, the in-

duced electric field in the cavity,
−→
E (t) satisfies a similar

condition,
−→
E (t) =

−→
E (t0) + c(θ(t)− θ(t0)). This happens

simply because
−→
E (t) is governed by a first order inho-

mogeneous differential Maxwell equation and requires a
boundary condition. As we’ll see, the particular solu-
tion of Maxwell’s equations for an induced electric field
in a static background magnetic field is of fundamental
importance in axion electrodynamics and drives most of
the interesting phenomena. Modulo this subtlety, the ex-
plicit calculation of the Feynman diagram as in Fig.(1)
nontrivially confirms the argument based upon Witten’s
dyons. The full calculations simultaneously provides con-
sistency with decoupling via the nonlocal term.

We begin by giving a detailed derivation of the ef-
fective action of the electron OEDM in Section(II). We
consider both the non-relativistic Pauli-Schroedinger for-
malism for a resting electron, and also Georgi’s covari-
ant heavy quark formalism for electron of 4-velocity vµ
[7]. The latter formalism is adapted to the electron,
which may be viewed as ultra-heavy in comparison to
ma, and shows that the resulting interaction is of the
form ∝ θ(t)ψvσµνγ

5ψvFµν for ψv = (1 + v/ )ψ/2, with
4-velocity vµ. The results are consistent, and reveal the
full effective action with the nonlocal term.

In Section III.A we show that the structure of the ac-

tion with the nonlocal term is completely determined
by the axion decoupling, i.e., by the shift symmetry,
a/fa → a/fa + φ, which is maintained in perturbation
theory. While the physical effective action of the OEDM
is consistent with the a/fa → a/fa + φ symmetry, we
emphasize that there are no additional suppressions in-
volving higher powers of ma, i.e., our OEDM physics is
on par with the induced oscillating electric field in an RF
cavity experiment. In Section III.(B,C), we observe how
this nonlocality arises in well-known solutions to, e.g.,
the RF cavity experiments.
To further probe this phenomenon, we show explicitly

in Section IV that the classical Maxwell equations for
a localized magnetic dipole, such as an electron in free
space, leads to the emission of electric dipole radiation,
i.e., the classical radiation field from a stationary elec-
tron is that of a Hertzian electric dipole radiator. The
classical calculation is compared to the quantum calcula-
tion, and they are found to be consistent. Large magnetic
fields imbedded in conductors likewise provide a source
for such axion induced electric dipole radiation.
In Section V we consider a possible experimental con-

figuration for detection of this radiation based upon an
array. This is a broadband simple radiator, and can be
viewed as an array of high field magnets, or as a planar
slab of conductor with a large magnetic field imbedded
in the plane of the conductor. This can produce power
output of upwards of order ∼ 10−24 watts and appears
to be detectable radiometrically. The main advantage
over RF cavity experiments is that broad-band radiators
do not require resonant tuning. We are encouraged
by the simple estimates of the signal integration that we
provide that this may lead to detactability, even in the
challenging range 1012 ≥ fa ≥ 1010 GeV, or short axion
wavelength. We note that there are several papers that
touch on these and related ideas, e.g., [8], [9], and [10].

Let us recall some basic concepts. The axion is a
hypothetical, low–mass pseudo-Nambu-Goldstone boson
(PNGB) that offers a solution to the strong CP prob-
lem of the standard model, and simultaneously provides
a compelling dark matter candidate. The expected mass
scale of the axion is ma ≈ m2

π/fa where typical expected
values of the decay constant fa range from ∼ 1010 GeV
upwards [11–13].
The axion is expected to have an anomalous coupling

to the electromagnetic field
−→
E ·

−→
B, taking the form:

ga
4

∫
d4x

(
a

fa

)
Fµν F̃

µν = −ga

∫
d4x

(
a

fa

)
−→
E ·

−→
B (2)

where F̃µν = (1/2)ϵµνρσF ρσ, and ga is the dimensionless
anomaly coefficient. In various models we have [14–16]:

ga ≈ 8.3× 10−4 DFSZ

ga ≈ −2.3× 10−3 KSVZ (3)

In making quantitative estimates in Section V. we will

Popular solution: light new “axion” field , also modifies QED

QCD allows CP-violating “theta-term” , but its effects are not observed 

If  it’s abundant in cosmos, it yields an oscillating EDM in electrons 
Christopher Hill 1508.04083

LCPV =

⇥

32⇡2

Gµ⌫
˜Gµ⌫ , (⇥

exp. < 10

�10, neutron EDM)
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This is a solution since:

0 =
−→
∇ ×

(−→m
r3

− 3
−→r (−→m · −→r )

r5

)
(55)

(note that any potential severe surface term singularity

arising here, e.g., such as in
−→
∇i(rj/r5), will be ∝ δij or

∝ rirj , but contracted with ϵijk from the cross-product,

and hence zero). However, since
−→
B r(r⃗, t) = 0, this is a

nonpropagating solution. It exists for any background

static magnetic field satisfying
−→
∇ ×

−→
B 0 = 0 . We will

require incorporating this non-propagating solution into
our full radiation solution momentarily.
The existence of this solution has an important impli-

cation: The sourceless dipole field surrounding the ori-
gin, does not lead to radiation. The radiation comes only

when we have a nonzero magnetic field
−→
B 0 which curls

around a nonzero dipole source term. This is analogous
to the infinite universe with a constant magnetic field ver-
sus the RF cavity: it is the conducting wall of the cavity
that enforces the boundary condition that produces the
resonant magnetic and electric fields.
We can now solve the Maxwell equations using re-

tarded Green’s functions for a vector potential, Ar(r⃗, t),
describing the radiative oscillating response fields in
Coulomb gauge. The analysis mostly follows the text-
book derivations as in [6], Chapter 9, but involves the
non-propagating solution described above. In what fol-
lows, we will pass to complex notation where θ(t) =
θ0 exp(imat), and the physical response fields will be the

real parts of the complex
−→
E r and

−→
B r. The radiated elec-

tromagnetic fields
−→
B r(r⃗, t) and

−→
E r(r⃗, t) are obtained as

follows:

−→
E r(r⃗, t) = −

1

4π
gaθ(t) exp(−ima|−→r |)

·
(
[1− exp(ima|−→r |) + imar]

(−→m
r3

− 3
−→r (−→m · −→r )

r5

)

−m2
a

(−→m
r

−
−→r (−→m ·−→r )

r3

))
(56)

and:

−→
B r(r⃗, t) =

1

4π
ga∂tθ(t) exp(−ima|−→r |)

· −→m ×
(−→r
r3

+
ima

−→r
r2

)

(57)

One can readily verify that eqs.(56, 57) satisfy the
Maxwell equations eqs.(47, 48) with the source term

−ga
−→
B 0(r⃗) (∂tθ(t)). Notice that the second term in the

brackets [...] in eq.(56) is the non-propagating solution of
eq.(53)
Taking the near-zone limit yields:

−→
E r(r⃗, t) → 0 (58)

which vanishes due to cancellation with the particular
solution, and:

−→
B r(r⃗, t) →

1

4π
gaimaθ(t)

(
−→m ×

−→r
r3

)
(59)

From the near-zone limit we can confirm the Maxwell
equations and read-off the source structure:

∇×
−→
B r − ∂t

−→
E r = −

1

4π
ga∂tθ(t)

(
−
8π

3
−→mδ3(−→r )

+
−→m
r3

− 3
−→r (−→m ·−→r )

r5

)
(60)

Thus we see that the propagating radiation is due to
the physical OEDM source, which induces the curling
magnetic field, and is not due to the dipole magnetic
field surrounding the source.
In the far-zone we have:

−→
E r(r⃗, t) →

gam2
a

4π
θ(t) exp(−ima|−→r |)

(−→m
r

−
−→r
r2

−→m ·−→r
r

)

(61)

−→
B r(r⃗, t) → −

gam2
a

4π
θ(t) exp(−ima|−→r |)

(
−→m ×

(−→r
r2

))

(62)

These are seen to be formally equivalent to the electric
dipole radiation fields , where our magnetic moment m⃗
replaces the electric moment p⃗ in Jackson, [6] eq.(9.18).
Hence, the source of the radiation is the axion induced
OEDM.
From this we can compute the cycle averaged Poynting

vector,
−→
K =<

−→
E r ×

−→
B r >:

−→
K =

1

32π2
g2am

4
aθ

2
0

[(−→r
r2

)(−→m2

r
−

(−→m ·−→r )2

r3

) ]

(63)

Using −→m = µBohrS⃗, the angular differential emitted
power, P , for our classical electron is therefore given by
the classical dipole pattern ([6], eq.(9.23)):

dP

dΩ
=

1

32π2
g2am

4
aθ

2
0µ

2
Bohr sin

2 θ (64)

The total the emitted power is then:

Ptot =
1

12π
g2am

4
aθ

2
0µ

2
Bohr. (65)

also proposes new radiation observables in magnetized systems 
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Precision QCD calculations 

Figure 1. Representative Feynman diagrams for the calculation of pp ! �� at NNLO. From
left to right these correspond to double virtual (calculated in ref. [57]), real-virtual and real-real
corrections.

LHC phenomenology, comparing our predictions to data obtained by the CMS experiment
at 7 TeV, and to the m�� spectrum reported by ATLAS at 13 TeV. Finally, we draw our
conclusions in section 5. Appendices A, B and C contain additional technical details of our
calculation.

2 Calculation

In this section we present an overview of our calculation of diphoton production at NNLO
and discuss the various contributions that are included in this paper. Before going into
detail we introduce the following notation

�NLO
�� = �LO

+��NLO ,

�NNLO
�� = �NLO

+��NNLO
= �LO

+��NLO
+��NNLO . (2.1)

In this way ��X represents the correction obtained from including the coefficient that first
arises at order X in perturbation theory. We use this notation both inclusively (as written
above) and for differential predictions.

2.1 Overview

We present representative Feynman diagrams for the various topologies that enter the
calculation of the pp ! �� process at NNLO in Figure 1. At this order in perturbation
theory contributions arise from three distinct final states. The simplest is the one that also
represents the Born contribution and corresponds to a 2 ! 2 phase space. At NNLO this
final state receives corrections from two-loop amplitudes interfered with the LO amplitude,
and one-loop squared contributions. The 2 ! 3 real-virtual phase space consists of tree-
level and one-loop amplitudes for qqg�� interfered with one another. Finally the largest
phase space, representing a 2 ! 4 process, is referred to as the double-real contribution and
consists of two tree-level qq�� +2 parton amplitudes squared. The contributions discussed
above have ultraviolet (UV) poles in the double-virtual and real-virtual phase spaces, which
we renormalize in the MS scheme. Amplitudes for the double-virtual contribution can be
found in ref. [57], for the real-virtual in ref. [58], and tree-level amplitudes for the real-real
can be found in ref. [59].

After UV renormalization the individual component pieces of the calculation still con-
tain singularities of infrared (IR) origin. These infrared poles must be regulated, made

– 3 –

John Campbell, Keith Ellis, Ye Li, 
Ciaran Williams
arXiv: 1603.02663

Predictions for LHC diphoton production @ NNLO in QCD
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Figure 6. The pp ! �� cross section at various orders in perturbation theory, as a function of
the LHC operating energy,

p
s. Acceptance cuts have been applied, as described in the text. Also

shown is the CMS measurement, under the same set of cuts, at 7 TeV [15].

particularly sensitive to higher order corrections. In the bulk of the phase space they first
appear at one order higher in ↵s than the total inclusive cross section. Sadly, most of the
distributions made publicly available by the experimental collaborations suffer from this
problem. It would be interesting to additionally compare true NNLO observables, such as
the transverse momenta and rapidities of the photons, in future analyses at higher energies.

We now examine the predictions for the invariant mass of the photon pair shown in
Figure 7 in more detail. Note that the transverse momentum cuts on the photons requires
m�� > 80 GeV at LO, so that the region of this distribution below that value is particularly
sensitive to higher order corrections. For all of the figures described here, the plots on
the left hand side are obtained using a pure NNLO prediction, while those on the right
represent the prediction obtained with the inclusion of the ��N3LO

gg,nF
contributions. The

NNLO prediction does a good job of describing the data obtained by CMS, although the
central values are typically a little on the low side compared to data. The situation is
improved in the right hand plot, after inclusion of the ��N3LO

gg,nF
pieces. In particular in the

region around 80 . m�� . 150 GeV the prediction follows the shape of the data a little
more closely.

In Figure 8 we turn our attention to the p��T spectrum, using the same style as for
the m�� plots. The pure NNLO prediction again describes the data very well, even in the
very soft p��T < 10 GeV region of phase space. Including the gg pieces at NLO improves
the agreement with data in the region p��T > 10 GeV. In the soft region of phase space
it is difficult to argue that the inclusion of the additional pieces improves the agreement

– 12 –
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Nature of  EWSB
Tadpole Induced EWSB and  pNGB Higgs Models 

 Roni Harnik, Kiel Howe,  John “Jack” Kearney  arXiv: 1603:03772

Example: composite Higgs with extra color charged particles 

Higgs always has + mass,  EWSB occurs in other sector

Higgs is approximate Nambu-Goldstone boson of  global symmetry grp.

Reduced fine-tuning

7

0.5 1.0 1.5 2.0 2.5 3.0
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D
-
1
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FIG. 2. Top sector radiative tuning in the SO(5)/SO(4)
5+1 model (or MCHM

5+1

) with a tadpole as a function of
the lightest colored top partner massM

colored

for fH = 1 TeV.
Dashed curves correspond to di↵erent choices of (M

1

,m
4

, ✓R),
as listed in the legend. For comparison, the black solid line
corresponds to MCHM

5+1

without a tadpole (i.e., with � =
�
SM

generated by large qL compositeness, determining ✓R).

 A, c
A. To leading order in vH

fH
, the SU(2)L-doublet top

partners have masses m4 and M4 = m4/ cos ✓L, and the

SU(2)L-singlet top partner has mass M1 = m1/ cos ✓R.

The Yukawa coupling is

yt =
m4

fH
sin ✓L sin ✓R (20)

to leading order, which requires m4 ⇠> fH , and gives a

lower bound M4
fH ⇠> 2

sin ✓R
for the top partner mixing with

the elementary tL. For numerical results, we use yt =

yt,SM (v/vH), where yt,SM is the MS value at 1 TeV.

The full definition of the two-site model and the radiative

Higgs potential is given in App. A. In the limit of a fully

composite tR, sin ✓R = 1 and

�↵ = � 3y2
t

16⇡2

M2
4

f2
H

✓
1 + log

✓
µ2

M2
4

◆◆
(21)

The one-loop quadratic divergences are cut-o↵, but a

residual logarithmic scale-dependence remains associated

with the scale µ of the next set of top partner resonances

[21]. For concreteness, we set µ = 3M4.

Fig. 2 shows the tuning in this tadpole model as a func-

tion of the lightest top partner mass for several di↵erent

sets of parameters (M1, m4, ✓R), with sin ✓L determined

from Eq. (20). For comparison, we also show the tuning

for the MCHM5+1 model without a tadpole in which the

minimal top sector generates � = �SM radiatively to give

mh = 125 GeV. Achieving su�ciently large � = �SM

requires an increase in qL compositeness, such that the

Higgs experiences more explicit breaking from yL > yt.2

This in turn leads to more tuning. A model exhibiting

top partners with masses ⇠> fH and a tadpole contribu-

tion to the potential can be significant more natural (with

tuning reduced by O(5 � 10)) than the MCHM5+1 with

�SM generated by the minimal top sector.

Because the top partners cutting o↵ the quadratic sen-

sitivity are always heavier than ⇠ 2fH , the radiative tun-

ing from the top sector in this model is always worse than
f2
H

2v2
H

. As such, one can also consider alternatives to in-

duced EWSB. For example one could include additional

non-minimal radiative contributions giving � = �SM with

|↵| ⇠ �, which would not substantially increasing the

tuning. For example, the ‘maximally natural’ top sec-

tor of the MCHM5+1 model can be supplemented by

additional radiative contributions to the potential with

|�↵| ' |��| from large ⌧R compositeness.3 Another

possibility is an extended top sector, for example the

MCHM14+1 model gives |↵| ⇠ |�| and may be able to

radiatively realize � = �SM in the region of parameter

space with m⇤ ⇠ fH . Therefore, in SO(5)/SO(4) mod-

els, other equally natural realizations may exist. But,

the tadpole mechanism is attractive for preserving the

minimal partial compositeness partner realization.

In the following section, however, we study a Twin

Higgs model where the quadratic sensitivity is cut o↵

below the scale fH , and the tadpole model can thus sub-

stantially improve the tuning compared to the f2
H

2v2
H

tuning

obtainable in a purely radiative model.

B. Twin Higgs

The quadratic sensitivity of ↵ to the top sector in Twin

Higgs models is cut o↵ by the twin top at mtB ' ytfHp
2

,

but a logarithmic sensitivity remains to the scale MT

of new colored top partners that restore the full global

2 Similar to raising mh via large A-terms in the MSSM—the in-
creased explicit symmetry breaking enhances the quartic, but
also results in more tuning.

3 This can be accomplished, e.g., in the framework of [53].
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Matter Asymmetry 
Baryogenesis via particle-antiparticle oscillations 

Seyda Ipek, John March-Russell  arXiv:1604.00009

2

is also suppressed until !
osc

> H(T ). Another quantum
process that suppresses oscillations is the quantum Zeno

e↵ect [18], also known as “a watched pot never boils”:
Flavor-sensitive scatterings hinder oscillations. This ef-
fect was pointed out regarding neutrino oscillations in
the early Universe [19, 20], but was largely left out of
particle–antiparticle oscillation discussions. Refs. [21, 22]
incorporated elastic scatterings and annihilations in the
analysis of asymmetric dark matter oscillations. The ef-
fects of flavor-sensitive and flavor-blind interactions on
particle–antiparticle oscillations were clearly identified in
Ref. [22] and cast out in the form of density matrix equa-
tions. (We point out that CP violation was not consid-
ered in Ref. [22]; since dark matter does not decay, there
cannot be CP violation in this system.)3

In this work we will study CP violation in particle–
antiparticle oscillations in the early Universe by study-
ing the time evolution of the density matrix as outlined
in Ref. [22]. Without any interactions, oscillations start
when the expansion rate of the Universe drops below
the oscillation rate of the particles, H(T ) < !

osc

. If
the particles interact with the relativistic plasma in the
early Universe, the oscillations are further delayed un-
til �

int

< !
osc

, where �
int

is the rate of the interaction
(and depends on the nature of the process). In order
to enhance CP violation in these oscillations, particles
should oscillate at least a few times before they decay.
The longer the oscillations are delayed the less CP vi-
olation there is. (Since the start of oscillations is di-
rectly related to the baryon asymmetry in this scenario,
we will address it extensively throughout the text.) We
will show that a particle asymmetry can be produced via
the oscillations and out-of-equilibrium decays of a parti-
cle of mass O(100 GeV) with a mass splitting and decay
rate of O(10�6 eV) even in the presence of interactions
with O(ab–fb) cross-sections. As a specific example of
this scenario, we will study a U(1)R-symmetric SUSY
model with R-parity violation. We will show that bino–
antibino oscillations in this model can explain the mea-
sured baryon asymmetry.

The rest of the paper is organized as follows. We
start with a short review of particle–antiparticle oscil-
lations for a pseudo-Dirac fermion in Section II. In Sec-
tion III we study the oscillations of an electroweak scale
pseudo-Dirac fermion in the early Universe (at temper-
ature T ⇠ O(10 � 100 GeV)). We include interactions,
specifically elastic scatterings with light particles and an-
nihilations. In Section IV we calculate the baryon asym-
metry that can be generated via the particle–antiparticle
oscillations. We consider a specific example of this sce-
nario in Section V. We give our concluding remarks in

3 As a way to evade all quantum decoherence e↵ects, the authors
of Ref. [23] used heavy particles that decay out-of-equilibrium at
very low temperatures to mesinos. In that case there are no other
processes that compete with oscillations and mesino–antimesino
oscillations enhances CP violation.

Section VI.

II. PARTICLE–ANTIPARTICLE OSCILLATIONS

In this section we briefly review particle–antiparticle
oscillations. (For details, see [24].) For simplicity let
us focus on a single generation of pseudo-Dirac fermions
with the mass Lagrangian

�L
mass

= M�⌘ +
1

2
m� ��+

1

2
m⌘ ⌘ ⌘ + h.c. (2)

where �, ⌘ are 2-component, left-handed Weyl fields,
charged +1, �1 under a global U(1), respectively. Let
us define the Dirac field  

 =

✓
⌘↵

�†↵̇

◆
. (3)

Particle and antiparticle states can be written in terms
of the creation and annihilation operators

 (x) =
X

s=±

Z
fdp

⇥
bs(p)us(p) eipx + d†

s(p)vs(p) e�ipx
⇤
,

 c(x) =
X

s=±

Z
fdp

⇥
ds(p)us(p) eipx + b†

s(p)vs(p) e�ipx
⇤
,

where fdp = d3p
(2⇡)

3
2Ep

, such that

|p, s, i = d†
s(p)|0i, |p, s, ci = b†

s(p)|0i.

Given the Majorana masses m�,⌘, particle and antipar-
ticle states mix, and  is called a pseudo-Dirac fermion.
In order to produce a baryon asymmetry, let us also con-
sider the following e↵ective operators that violate baryon
or lepton number

�L
int

= g� �BX + g⌘ ⌘BX + g0
� �LY + g0

⌘ ⌘LY + h.c.,
(4)

where B/L are states with +1 baryon/lepton number.
X, Y are states with zero baryon and lepton number and
are given by the details of the model. The e↵ective cou-
pling constants g, g0 have the proper dimensions to make
the Lagrangian dimension-4. If they are heavy enough,
 -particles and antiparticles can decay via these interac-
tions to baryons or leptons.

Including the mass terms and focusing only on the
baryon-number-violating interactions, the Hamiltonian is

H = M � i

2
�, (5)

with

M =

✓
MD MM

M⇤
M MD

◆
,

� ' �

✓
|g�|2 + |g⌘|2 2 g⇤

�g⌘

2 g�g⇤
⌘ |g�|2 + |g⌘|2

◆
. (6)
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FIG. 7: The total  -number density ⌃(z), the  -asymmetry �(z) and the baryon asymmetry �B(z) for �0

= 1 fb (solid), 1 ab
(dashed), 10�2 ab (dotted) and M = 300 GeV, m = 2⇥10�6 eV, � = 10�6 eV, r = 0.1, sin�

�

= 0.5. The baryon asymmetry
of the Universe, ⌘ ' 10�10, is shown for reference. The oscillations are delayed longer for flavor-sensitive interactions: For an
e↵ective cross-section �

0

= 1 ab (dashed) the oscillations start at z
osc

⇠ 9 if the interaction is flavor-blind, while they start
at z

osc

⇠ 20 if the interaction is flavor-sensitive. With the parameters used, not enough baryon asymmetry is produced for
�
0

& 10 ab with flavor-sensitive interactions
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10-12

10-10

10-8

10-6

m (eV)

ΔB

� = 10�7 eV

� = 10�6 eV

� = 10�5 eV
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FIG. 8: The final baryon asymmetry, �B(z ! 1) vs the
Majorana mass for di↵erent decay rates and for both flavor-
blind (dashed) and flavor-sensitive (solid) interactions with
�
0

= 1 ab, M = 300 GeV, r = 0.1, and sin�
�

= 0.5. For
mass di↵erences (�m = 2m) larger than ⇠ 10�2 eV, oscil-
lations start z

osc

< 5 and there is little di↵erence between
flavor-blind and sensitive interactions. If the mass di↵erence
is smaller than 10�2 eV, oscillations are delayed longer for
flavor-sensitive interactions. (See also Fig. 5.) Hence the
baryon asymmetry is smaller (compared to flavor-blind inter-
actions).

Ref. [24]7 could generate the baryon asymmetry of the
Universe.

7 In Ref. [24] the focus was gluino interactions. Gluinos interact
strongly. Their annihilation cross-section would be too big to fall
out of equilibrium. Hence we study bino interactions here.

A. The Model

The model we study is a SUSY model with an ap-
proximate global U(1)R symmetry. The SM particles are
not charged under this global U(1)R while all the su-
persymmetric partners have +1 R-charge. With this R-
charge assignment, the gauginos cannot have Majorana
masses. In order to give Dirac mass to the bino we in-
troduce the super field �S whose fermion component S,
the singlino, is the Dirac partner of the bino. In order
to give non-gauge couplings to the singlino, we introduce
the superfields �

¯D and �D, transforming under the SM
gauge group in the same way as d̄ and d̄⇤, respectively.
The field content of the model that is relevant for us is
shown in Table I. We will only give a short summary of
the complete model focusing on the parts that are most
relevant to baryogenesis. For details see Ref. [24].

The mass Lagrangian for the bino and the singlino is

�L
mass

= MDB̃S +
1

2

⇣
m

˜BB̃B̃ + mSSS
⌘

+ h.c., (44)

where MD is the Dirac mass and m
˜B,S are U(1)R-

breaking Majorana masses. The Dirac mass

MD =
cD

⇤M
, (45)

arises from a spurion term where c is a dimensionless
parameter, D is a SUSY-breaking order parameter and
⇤M is the messenger scale. Majorana mass terms for the
gauginos will be generated by anomaly mediation [27–29],
which gives, e.g., a Majorana bino mass

m
˜B =

�(gY )

gY
F�. (46)

�(gY ) is the beta function for the hypercharge coupling

Oscillations between beyond-SM states can enhance CP violating effects 
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the early Universe [19, 20], but was largely left out of
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analysis of asymmetric dark matter oscillations. The ef-
fects of flavor-sensitive and flavor-blind interactions on
particle–antiparticle oscillations were clearly identified in
Ref. [22] and cast out in the form of density matrix equa-
tions. (We point out that CP violation was not consid-
ered in Ref. [22]; since dark matter does not decay, there
cannot be CP violation in this system.)3

In this work we will study CP violation in particle–
antiparticle oscillations in the early Universe by study-
ing the time evolution of the density matrix as outlined
in Ref. [22]. Without any interactions, oscillations start
when the expansion rate of the Universe drops below
the oscillation rate of the particles, H(T ) < !

osc

. If
the particles interact with the relativistic plasma in the
early Universe, the oscillations are further delayed un-
til �

int

< !
osc

, where �
int

is the rate of the interaction
(and depends on the nature of the process). In order
to enhance CP violation in these oscillations, particles
should oscillate at least a few times before they decay.
The longer the oscillations are delayed the less CP vi-
olation there is. (Since the start of oscillations is di-
rectly related to the baryon asymmetry in this scenario,
we will address it extensively throughout the text.) We
will show that a particle asymmetry can be produced via
the oscillations and out-of-equilibrium decays of a parti-
cle of mass O(100 GeV) with a mass splitting and decay
rate of O(10�6 eV) even in the presence of interactions
with O(ab–fb) cross-sections. As a specific example of
this scenario, we will study a U(1)R-symmetric SUSY
model with R-parity violation. We will show that bino–
antibino oscillations in this model can explain the mea-
sured baryon asymmetry.

The rest of the paper is organized as follows. We
start with a short review of particle–antiparticle oscil-
lations for a pseudo-Dirac fermion in Section II. In Sec-
tion III we study the oscillations of an electroweak scale
pseudo-Dirac fermion in the early Universe (at temper-
ature T ⇠ O(10 � 100 GeV)). We include interactions,
specifically elastic scatterings with light particles and an-
nihilations. In Section IV we calculate the baryon asym-
metry that can be generated via the particle–antiparticle
oscillations. We consider a specific example of this sce-
nario in Section V. We give our concluding remarks in

3 As a way to evade all quantum decoherence e↵ects, the authors
of Ref. [23] used heavy particles that decay out-of-equilibrium at
very low temperatures to mesinos. In that case there are no other
processes that compete with oscillations and mesino–antimesino
oscillations enhances CP violation.

Section VI.

II. PARTICLE–ANTIPARTICLE OSCILLATIONS

In this section we briefly review particle–antiparticle
oscillations. (For details, see [24].) For simplicity let
us focus on a single generation of pseudo-Dirac fermions
with the mass Lagrangian

�L
mass

= M�⌘ +
1

2
m� ��+

1

2
m⌘ ⌘ ⌘ + h.c. (2)

where �, ⌘ are 2-component, left-handed Weyl fields,
charged +1, �1 under a global U(1), respectively. Let
us define the Dirac field  

 =

✓
⌘↵

�†↵̇

◆
. (3)

Particle and antiparticle states can be written in terms
of the creation and annihilation operators

 (x) =
X

s=±

Z
fdp

⇥
bs(p)us(p) eipx + d†

s(p)vs(p) e�ipx
⇤
,

 c(x) =
X

s=±

Z
fdp

⇥
ds(p)us(p) eipx + b†

s(p)vs(p) e�ipx
⇤
,

where fdp = d3p
(2⇡)

3
2Ep

, such that

|p, s, i = d†
s(p)|0i, |p, s, ci = b†

s(p)|0i.

Given the Majorana masses m�,⌘, particle and antipar-
ticle states mix, and  is called a pseudo-Dirac fermion.
In order to produce a baryon asymmetry, let us also con-
sider the following e↵ective operators that violate baryon
or lepton number

�L
int

= g� �BX + g⌘ ⌘BX + g0
� �LY + g0

⌘ ⌘LY + h.c.,
(4)

where B/L are states with +1 baryon/lepton number.
X, Y are states with zero baryon and lepton number and
are given by the details of the model. The e↵ective cou-
pling constants g, g0 have the proper dimensions to make
the Lagrangian dimension-4. If they are heavy enough,
 -particles and antiparticles can decay via these interac-
tions to baryons or leptons.

Including the mass terms and focusing only on the
baryon-number-violating interactions, the Hamiltonian is

H = M � i

2
�, (5)

with

M =

✓
MD MM

M⇤
M MD

◆
,

� ' �

✓
|g�|2 + |g⌘|2 2 g⇤

�g⌘

2 g�g⇤
⌘ |g�|2 + |g⌘|2

◆
. (6)
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