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DEFINITIONS (Taken from the December, 2013
INT Workshop on neutrino reactions)

Quasielastic

From very early work in electron scattering from nuclei the inclusive quasielastic
contribution is usually taken to be the peak seen at roughly Q2/2m. The reason
for the terminology comes from a simple (and somewhat naive) model: were the
process to be simply electron scattering from a non-interacting nucleon at rest in
a nucleus, a delta-function peak at the above energy loss would be the answer.
The nucleons in the nucleus are in fact interacting and moving, and thus the
delta function is smeared out (Fermi smearing). Actually things are more
complicated than this and both initial- and final-state interactions are important;
furthermore, the nucleons are not on-shell and thus their energies and momenta
are not trivially related as some models suggest.



quasielastic, continued...

For many theorists the quasielastic contributions are distinguished by their
being produced by one-body operators, in contrast to effects arising from
two-body operators, such as meson exchange current contributions (see below).
Note that this does not equate to one-, two-, three-, etc. nucleon knockout,
however, as one type of current operator can give rise to different numbers

of nucleons in the final state, dependent on what channels are open.

In neutrino studies, in contrast to electron scattering, different signatures occur
for contributions where a pion is detected versus where it is not; the latter is
called quasielastic, but is in that usage really the net effect obtained using the

full electroweak current with one- and two-body contributions. In fact, even then
there is an issue that pions can be produced, but be absorbed and so not detected
and accordingly these contributions are counted as “quasielastic”. Naturally

some model is typically invoked to account for these effects that corrupt the

strict meaning of quasielastic, although this means some model dependence

has been introduced.



Inelastic contributions

Above pion production threshold one has inelastic contributions coming
from various sources: non-resonant pion production, production in the
region where the Delta dominates, or where other baryon resonances

are expected to play significant roles, multi-pion production, kaon
production, etc., eventually to deep inelastic scattering. In the inclusive
cross section these are not really distinguishable, but all pieces of the

total cross section. For instance, duality studies indicate that on the average
effects from specific hadrons in the final state give rise to the same overall
result as does DIS. Thus modeling in this region must be done with care to
avoid double counting.



Meson exchange current contributions

In models such as the relativisitic Fermi gas (RFG) one can catalogue the various
contributions from one-body current operators, two-body contributions counted

as MEC versus correlation effects, with both single-nucleon and two-nucleon ejection
(the former interfere with the one-body single-nucleon amplitudes), and so on. This
can be done because the many-body wave functions are especially simple, namely,
on-shell (non-interacting) plane-wave states in Slater determinants. For models with
interactions present one has a problem separating the MEC and correlation effects
computed as matrix elements of two-body operators from effects already present in
the wave functions themselves. In fact, the very concepts are not observables but are
representation-dependent. A sophisticated interacting many-body description may
already have some (but likely not all) correlation and MEC effects incorporated, in
contrast to a simple model where they may not already be present.

[In discussion, examples can be given.]

Another comment on MEC effects: These are not optional, but are required for any
interacting system by gauge invariance. Any model with interactions must confront
the requirement of having the corresponding two-body MEC contributions... and
many models (almost all) cannot do this consistently.



Correlations, both long- and short-range

In naive models such as the RFG one can include long-range p-h correlation effects
within the context of perturbation theory, and can make things gauge invariant to a
given order. These arise typically from the longest-range part of the NN interaction,
namely that arising from pion exchange. Short-range effects are sometimes also
included, although there may be issues with their validity at high energies.

Once one goes to more sophisticated models the meaning of short- and long-range
correlations change... these are not observables and are representation dependent.
For instance, in one approach a strong repulsive core might be included to allow
saturation of nuclear matter and might thereby influence the electroweak cross
sections, especially in promoting strength to high missing energy (this needs defining
as well; it can be covered in discussions). Alternatively, in relativistic mean field
approaches (a la Walecka) many of the correlation effects are already present via
strong scalar and vector meson exchanges and therefore one should not be adding
them willy nilly or one will run the risk of double counting. Note that this approach
also saturates nuclear matter.



Inclusive versus semi-inclusive and more exclusive reactions

Inclusive electroweak cross sections are total hadronic cross sections: only

the final-state lepton is presumed to be detected, but nothing from the nuclear
side of the scattering diagram. As such, even very naive models such as the RFG
can give reasonable answers. The models tend to satisfy basic symmetries such
as unitarity, Lorentz covariance (often, but not always which is serious), maybe
gauge invariance, etc. This being so, one tends to get roughly the correct answers
since sum rules are being enforced. The main issues with such simple modeling
for inclusive reactions is that the strength is often not quite correctly distributed
in energy-momentum.

In contrast, when (say) a nucleon in the final state is detected in coincidence
with the final-state lepton one has a very different problem. The details of how
that nucleon interacts with the rest of the nucleons in the final state is a much
more complicated problem. Typical modeling that may be adequate for inclusive
cross sections can be very bad for semi-inclusive studies.

See lecture #3



Typically we assume that if one had a viable model for semi-inclusive scattering,
for example, for both (e,e’p) and (e,e’n) reactions, then one could integrate each
over the outgoing-nucleon, add the results, correct for double counting (which
rarely done, in fact) and should then recover the inclusive cross section.



A few basics:

The cross section takes on its characteristic form involving the contraction
of two second-rank Lorentz tensors. do ~ 7,, 1", corresponding to the lep-
tonic and the hadronic contributions which are thus factorized and dealt with
independently, The leptonic tensor is defined as

— ), ! LE
Ny = 2N E Jpdvs
e f

Its hadronic counterpart is

W =3 "J8 (@)% (a).
if

where the operations zﬂ';‘ in the two cases correspond to sums and averages
over the appropriate sets of leptonic quantum numbers (the helicities, in fact)
or hadron quantum numbers (helicities or spins. efc.) and integration over all
unohserved particles in the final state of the A — 1 system for hadrons.
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[t proves usetul to decompose both leptonic and hadronic tensors into pieces
which are symmetric (s) or antisymmetric (@) under index interchange u < v,
since In contracting them no symmetric-antisymmetric cross-terms are allowed.
Both tensors can thus be decomposed as 1, = 1, + 7y, and WH*" = WEF +
WY, where the terms are defined as

T?iy — %(F?,u,u 3 ??u‘u,} ??iy — %{.??gu . ?Fu,u,}
Wev = L(WH  WhH) Wev = 2(WEY — oK),

1 S ek C e E-] P
Clearly one has tha:t Tap = Mup . s +
summation over u implied in these expressions). In addition. since each tensor
1s proportional to the bilinear combinations of the electroweak currents in the
forms n,, ~ 7,7, and WH” ~ JE*J”, one has that n},, = n,,, and W™ = W¥H,
and thus that

and WHE = TWHE whereas 77, = Wi =0 (no

Mo = Ren - Mow = ﬂm?;rw
Wk — ReW# W = ImWH,
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Inclusive Scattering of Leptons
from Hadronic Systems:
(zeneral Hadronic Tensor

Let us consider the inclusive scattering of leptons from hadrons (nucleons or
nuclei, to be specific) in the one-boson-exchange approximation (exchange of a
~. W= or Z%) where the boson brings in 4-momentum Q* = (w. q). the initial
hadronic system has 4-momentum P’, and by 4-momentum conservation. the
unobserved final-state system has 4-momentum P}"" = QF + PF. The allowed
tform of the hadronic tensor can be deduced from the general developments of
the hadronic tensor as it 1s constructed from the available four-momenta which
for inclusive scattering where no final-state aspect of the hadronic system is
measured are only Q* and P! (see T. W. Donnelly. Prog. in Nuclear and
Particle Physics 13 (1985) 183 for extended arguments on hadronic tensors).
Three 1invariants can be constructed. [ = QQ. I, =) - F; and Pf = Uf. the
first two being dynamical variables, while the latter is simply a constant. In
the rest frame of the target one has Pf' = (M;.0.0.0) and so I = M;w. and
accordingly one can write all response tunctions as tunctions of (I, l2), (¢g.w)
or (Q?.z = |Q?|/2mv). where v (particle physics) is the same as w (nuclear
physics).
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Next one can write symmetric and antisymmetric hadronic tensors as func-
tions of the two independent four-momenta Q* and P”. In fact. it proves to be
more convenient to introduce a projected 4-momentum to replace the last one.
namely,

1 B Q- P Ok

Ut =— |P
M, | 02 )"

o

where then ) - U = 0. Also. to keep the dimensions consistent in the develop-
ments below let us introduce a dimensionless four-momentum transfer

(__;I.Uf
l.l"——
V@2

®

~
(O
*

The symmetric hadronic tensor may then be written
II-I';“*' — };_IQ,H!/‘ e 41‘-2@“@” s Argl[:_r,u,zjﬂ + Arq_{é“[,?y 4 L?_“Ejyjl

where X;. 7 = 1...4 are invariant functions of the invariants discussed above.
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The symmetric hadronic tensor may then be written
WH = X1g" + XoQMQ" + XsUPUY + X4 (QMU” + UFQY).

where X;. 2 = 1...4 are invariant functions of the invariants discussed above.
Likewise the antisymmetric tensor can be constructed from the basic 4-momenta

wer =i {(QUU — URQY) + Z1s#*0Gals |

where again Y7 and Z; are invariant tfunctions of the invariants above. The
terms having no =#¥®% namely the Y] term as well as the X terms. arise from
VV and AA contributions, whereas those with 2#7*%, namely the Z; term. come
from VA interferences.




For a conserved vector current (CVC) situation such as here for the VV
terms or for purely polar-vector electron scattering the continuity equation in

momentuin space re q111 res that

Qu (WEY) L = Qu (WE) ., =0,

This contraction removes the terms with Xzand Z;. leaving the conditions

XYV + XyV) Q" + XYVUY =0
}‘:lir" Vv E:_TI'; _ []

Since the basic four-momenta are linearly independent of each other the coet-
ficients above must all be independently zero, namely X7V — X5’V = X}V =
V¥V = 0. Accordingly, one has

QHQY e
2 } + X5 Y UrU”

i

(W) . = 0.

Conventionally X}V is usually called —117; and X3V is called 1. Or, alterna-
tively, linear conbinations are called Ry and R (L for longitudinal and T for
transverse).
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A side note: the fact that for a purely CVC situation one has no
antisymmetric hadronic tensor with which to contract the antisymmetric lep-
tonic tensor, the latter having an antisymmetric term when (say) considering
inclusive polarized electron scattering trom unpolarized nuclei, means that any
leptonic helicity asymmetry must arise from the VA Z; term above, and pro-
vides the basic reason why parity-violating electron scattering probes the weak
neutral current in an especially clean way.




The Relativistic Fermi Gas (RFG)

Inclusive Electron Scattering

Following W. M. Alberico, A. Molinar1,T. W. Donnelly, E. L. Kronenberg
and J. W. Van Orden, Phys. Rev. C34 (1988) 1801, one can write the inclu-
sive electron scattering cross section for scattering of an electron with 1mtial
4-momentum K* = (¢ k) to a final-state scattered electron with 4-momentum
K'* = (€', k') through scattering angle # in the form

d2c

20d0 = o [vpRr +vrRy],

acosf/2 ?
2esin’ 82

15 the Mott cross section and the lepton Rosenbluth kinematic factors in the
extreme relativistic mit are given by

|

Q[
72
3 — ———I—tanﬂ/ﬂ
5|3 )

where the 4-momentum transfer 12 given by

Q" = K* — K™ = (w,q)

Q?=w?—¢*<0 (spacelike).




The factors RFr and Rt are the longitudinal and transverse inclusive response
functions, respectively. They are obtained from the hadronic (nuclear) tensor

WHY through the relationships

R = W%
RT — Wll_l_wﬂz_

As discussed above, the single-nucleon (eN) elastic scattering hadronic tensor
for scattering from a nucleon moving with 4-momentum P* 1z given by

e = 0.7 = i) [y - £ e

e 1

my




and with invariant structure functions
Wi(r) = 7G(7)

L (GL(r) + TG(r)

Wa(7) 147

namely, functions of the dimensionless 4 momentum transfer 7 = |Q?|/4m3;.
Upon conserving 4-momentum, promoting a particle from a filled Ferm sea to
above 1t (making a 1p-1h state) and integrating over the Fermi sea one obtains
an expression for the RFG hadronic tensor:

Wrre = WiN(P'=P+Q.P)

Ik d3p
=/ EpEp+a)
x0(kr — |p|)0(|p +a|—kr)d[w — (E(p+q) — E(p))].

where the overall factor Rp 1s given by

NEp

3
MNKENE

with A" = Z. N the number of nucleons in the nucleus taking part in the inter-
action (one must sum over protons with a factor Z and add this to the sum over
neutron with factor N).




Here and below we use the dimensionless variables

A

("

w,’ﬂmﬁ
Q/Zm}\*
ng = kr/my

EF 1,.']_—|—‘q%.

Erp = /14191 -1

with 7 = k2 — A2 > 0. After a bit of work one can perform the integrals above
to obtain complete analytic expressions for the RFG response functions:

Rrr= RU-_FRFGUL,T

The function fRFG 15 given by

Fare = ——(ep —T)0(ep —T) |
F

r— egp — 2A q = 2kp Pauli — blocked
Tl o =wmV1+1/T—A=14Ep0° g=2kr non — Pauli — blocked

In the latter case one obtains the scaling function frpea -

Frre — fare = S(1—v?)8(1 — ),
npb 4




where the scaling variable 15 given by
A—T

\/T(1+}1)+E1fT(1+T}

The tactors U are

ﬁ:ﬂ
UL — [GE + WaA]

T

Ur = 27G3 +WaA

where the following definition (the result of performing the integrations over the
Fermi sea above) has been used:

A= % E (e§.+EFF+F3)+A(EF+I‘}+JF] —(1+7).




where the scaling variable 1z given by
A—T

\/'r(l +A)+ryT(14+7)

The tactors U are

=

Uy = Gz + WA

T

Ur = 27G3 +WaA

where the following definition (the result of performing the integrations over the
Fermi sea above) has been used:

T |1
A= = |3 (E§+EFF+F3)+A(EF+F}+A3] —(147).

Note: The RFG has also been derived starting from a spectral function.
See R. Cenni, T. W. Donnelly and A. Molinari, Phys. Rev. C56 (1997) 276.




Charge-changing Quasielastic

(CCQE) Reactions

The developments are completely analogous to the inclusive electron scat-
tering case discussed above (see J E. Amaro, M. B. Barbaro, J. A Caballero,
T. W. Donnelly, A. Molinari and 1. Sick, Phys. Rev. C71 (2005) 015501). The
CCQE response functions are simply the extensions of Ry 7 derived above:

RY = RofrrcUY

where the superseripts Y represent the vector and axial-vector combinations
of the responses (VV'V, AA V A) and the subseripts X represent their spacetime
projections (C'C, CL, ...). The overall factor Ry is as above but now with only
N = N(Z) for neutrinos (anti-neutrinos). The purely isovector factors U are

2
K 1
uyv = ((G{E?’)E n Wga)

Uyv 2-(GU)? + LA
2

IS 22
véd = S (S )

T

= (@2 + S@ra)




where, 1n addition to A defined above, the following definition has been used:

1 T 1
lf—— — —
ﬂ._mﬂ'l T<A+2(EF+I‘)) 1.

The 1zovector nucleon form factors GE] =Gg, —GE,, GE,;.} =G, —Gur,,s Gg}
and G{Pl} enter above through the combinations
1 1 1
= 5 (@) +7(63))
Gy — gl
1) (1
= aay
By defining the following components of the matrix element squared
ViRyY
VecREE +2Ver RET + Vi REE
Vr(RY" + R7%)

2V RYA




which contain leptonic tensor components V' given by

= l—tangé‘f?-ﬁz
. 52
L-'+tan25'/2- F

2u

7
Vee — 20Ver +07Veg

1 27 LY 1o 2
2p+tan ﬂ/2—p’tan 6/2 (V+2pp5 )

%i}a‘:m2 5/2 (1= vp"ﬁﬂ)

and nvolving the following additional dimensionless variables:

v? +tan28/2 - (1 +

_‘_'062) .52

= w/q
1—0°
q/(e+¢€)
= m'/V/|Q
w = (e+€)?-4¢°
tan’8/2 = |Q*|/vo
Note that now one 1n general should not invoke the extreme relativiatic limit for
an outgoing muon, but should retain 1ts mass, leading to the somewhat more

complicated lepton kinematic factors above. The ERL 1s recoveded simply by
setting ¢ to zero and 6 to 6.




The CCQE cross section 1in the RFG model 1z then

do G%. cos? 8- k"% ug

dQdk 22 dee’

where 8- 15 the Cabbibo angle and where ¥ = 1 for neutrino scattering and

X+ Xer + X+ xX1],

¥ = —1 for antineutrino scattering.
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for descriptions of CC/NC neutrino reactions, the full complement
of electroweak processes, including electron scattering and these
neutrino reactions, are very closely related.
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First comment: While the focus of this talk is placed on nuclear modeling
for descriptions of CC/NC neutrino reactions, the full complement
of electroweak processes, including electron scattering and these
neutrino reactions, are very closely related.

Accordingly,

1. Any model that does not succeed for electron scattering
is very unlikely to be valid for neutrino reactions.

In this talk | will freely switch between EM responses
and CC/NC weak interaction responses.
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Relativistic effects arise from three sources (which are not distinct):

DNP 2013
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Relativistic effects arise from three sources (which are not distinct):

1. Kinematic effects
2. Boost effects on the single-particle current matrix elements
3. Dynamical effects in the wave functions themselves

1. Kinematic effects:
At high energies the final-state ejected nucleon should obey relativistic
kinematics, E = (p2 + m2)2 when on-shell. Of course, when interacting
the initial- and final-state nucleons in the nucleus are off-shell. A non-
relativistic model can be roughly relativized for such effects by replacing
the energy transfer o by o (1 + w/2m), which places the QE peak at
essentially the correct position, namely, |Q?%|/2m rather than g%/2m.
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Relativistic effects arise from three sources (which are not distinct):

1. Kinematic effects
2. Boost effects on the single-particle current matrix elements
3. Dynamical effects in the wave functions themselves

2. Boost effects on the single-particle current matrix elements:
When making a non-relativistic approximation to the (on-shell) single-
particle matrix elements of the vector and axial-vector currents there
are boost factors that should be included. To leading order these are
multiplicative factors typically y or 1/y, where y = |q%/Q?|.

So, for instance the charge response is enhanced by the factor y
(note that this becomes very large as one approaches the lightcone
where o = g and so Q2 goes to zero); this is a Lorentz contraction
effect on the charge density. The transverse response goes the other
way, namely, is decreased by the factor 1/y.
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Relativistic effects arise from three sources (which are not distinct):

1. Kinematic effects
2. Boost effects on the single-particle current matrix elements
3. Dynamical effects in the wave functions themselves

3. Dynamical effects in the wave functions themselves:
The initial-and final-state nucleons in the nucleus are interacting and are
therefore off-shell. When relativistic bound and scattering wave functions
are employed (for instance in a Dirac Hartree approach) the lower components
of the 4-spinors are not related to the upper components by the free-particle
relationship and this is manifested in the electroweak responses; typically
these amount to 15-20% differences between the various types of response,
namely, violations of the so-called scaling of the zeroth kind where all of the
various responses (longitudinal, vector transverse, axial transverse, VA
interference, etc.) scale to a universal function.
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Transverse vector response at g = 1 GeV/c
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As an approximation, one can consider “semi-relativistic” modeling
where, starting with a non-relativistic model, two steps are made:

1.The kinematic shift introduced above is implemented,
placing the QE peak in roughly the correct position



Ry (MeV'h)

Transverse vector response at g = 1 GeV/c
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As an approximation, one can consider “semi-relativistic” modeling
where, starting with a non-relativistic model, two steps are made:

1.The kinematic shift introduced above is implemented,

placing the QE peak in roughly the correct position
2.The boost factors are included in leading order



Rp (MeV'h

Transverse vector response at g = 1 GeV/c

- Semi-relativistic FG
_ (non-relativistic FG
~ + relativistic kinematics
~ + boost factor)

TWD -1



Scaling phenomena are seen in many quantum many-body systems:

» Condensed matter physics (electron scattering, neutron scattering)
* Nuclear physics (lepton scattering, hadron scattering from nucleons)
 Particle physics (lepton-parton scattering)



Scaling phenomena are seen in many quantum many-body systems:

» Condensed matter physics (electron scattering, neutron scattering)
* Nuclear physics (lepton scattering, hadron scattering from nucleons)
 Particle physics (lepton-parton scattering)

Typically there are characteristic momenta and energies for the
constituents of the many-body system, and when probed with
(say) electron scattering at high energies (higher than the
characteristic energies), one sees various kinds of scaling.



Scaling phenomena are seen in many quantum many-body systems:

» Condensed matter physics (electron scattering, neutron scattering)
* Nuclear physics (lepton scattering, hadron scattering from nucleons)
 Particle physics (lepton-parton scattering)

Typically there are characteristic momenta and energies for the
constituents of the many-body system, and when probed with
(say) electron scattering at high energies (higher than the
characteristic energies), one sees various kinds of scaling.

... in this talk | will focus on lepton scattering
from nuclei

TWD -1



Begin by assuming that QE scattering is dominated by (e,e N):
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The daughter nucleus has 4-momentum

Pay = (EA—l’pA—l) =Q" + Py - Py
In the lab. system we define the missing momentum
p=p|=lpy —a|=|pas

and an “excitation energy” (essentially missing energy — separation energy)

g(p)E\/(MA—l)Z + p2 _\/(M2—1)2+ p2

where

0 _ pnpO
M,,=M,—-m +E,

with E, the separation energy and MY, , the daughter rest mass



Energy conservation gives

M,+w=E,+E,

:\/mN2+ p, +E, +&
:\/mN2+(q+p)2 +\/(M2—1)2+ p*+&

which can be turned around to yield an expression for the
excitation energy:

£ = I\/I2+co—\/(l\/l,‘i_l)2+ D’ —\/mN2+q2+ P’ +2pgcoséd



One can let the angle between p and g vary over all values and
impose the constraints

p>0
&E=>0

to find the allowed region in the missing-energy, missing-momentum
plane. When

_ N2 :
W < W =|Q /2mN one finds
g and o fixed
E
(y<0)
g
M
0 p
0 -y Y




. and when

2
W > O = ‘Q ‘/ZmN e Iz

g and o fixed
& (y>0)
S
®O—0
QE
0 P
0 +y Y




where one has the smallest and largest values of the missing
momentum at zero excitation energy occurring at

1
1
Y = STE [a+ﬂ]

with

W =M% +w)?—q? =W, =M2, +m,

0[=(M2+a))\/W2—WT2\/W2_(VVT _2m|\|)2
B=a[W?+W, (W, —2my) ]

The so-called y-scaling variable is approximately given by

y;\ﬁ(mﬂN+v)—q

v=w-E,



Scaling of the 1st Kind

 First, one uses (q,y) rather than (q,w) for the functional dependence
of the inclusive cross section. The inclusive cross section is
assumed to be the sum of the integrals over the semi-inclusive
(e,e’p) and (e,e’n) cross sections, i.e., over the momentum of
the ejected nucleon py. These can be turned into integrals

over p and ¢ covering the regions discussed above.
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N e g and o fixed
For given y<0
the region at ( y < 0 )
small p, but —
high € is T o
inaccessible M
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The semi-inclusive cross section is ... and is very small at large p

typically largest at small p and € and small &
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« Second, one notes that the typical parametrizations for the
off-shell single-nucleon cross sections (functions of
q, ®, P, €, and ¢) vary rather slowly as functions of
(p, €) for fixed (q, m, ¢y). This suggests integrating
over ¢y (leaving only L and T responses) and then
removing the result evaluated at an “optimal” choice
of p and «.
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 First, one uses (q,y) rather than (q,w)

« Second, one notes that the typical parametrizations for the
off-shell single-nucleon cross sections (functions of
q, ®, P, €, and ¢) vary rather slowly as functions of
(p, €) for fixed (q, m, ¢y). This suggests integrating
over ¢y (leaving only L and T responses) and then
removing the result evaluated at an “optimal” choice

f :
ofpand e What is optimal?

From the discussions above one is led to a choice such as the one
made in many analyses of scaling, namely, set p to |y| and ¢ to O:

l —elastic —elastic

ng,\fl :—|:ZC7ep + N oen :|
A p=lyl, £=0
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g and o fixed
(y<0)

&
M

Evaluate the single-nucleon
cross section at this point and
remove from integral
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g and o fixed
(y<0)

&
M

0 > P
0 -y Y

... then, dividing by the effective single-nucleon
cross section leads to the definition of the
scaling function:

2
Evaluate the single-nucleon F( ) _ do/ dQeda)
cross section at this point and d,¥)= Azeff
eN

remove from integral
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Example using “He data from SLAC:

do/d0dw

when the inclusive cross section
for various beam energies and
electron scattering angles
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Example using “He data from SLAC:

when the inclusive cross section
for various beam energies and
electron scattering angles
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is used to obtain the function F(q,y),
and this is plotted as a function of y
for various values of g, one finds

“\\\\\\\\\\\\\ﬁ‘

1074

F(y) (c/MeV)

1076

1077

1075 L

T T
+ NE3

° NE5

*He(e,e')

1
—800

1 1 1 1 1 1
—400 —200 0 200

y (MeV/c)

1
—600

TWD -1



10~° L —

Example using “He data from SLAC:

when the inclusive cross section
for various beam energies and
electron scattering angles
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do/d0dw

Example using “He data from SLAC:

when the inclusive cross section
for various beam energies and
electron scattering angles
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is used to obtain the function F(q,y),
and this is plotted as a function of y
for various values of g, one finds

Independence of @

!
SCALING OF THE 1st KIND

(y-scaling)
F(@,Y)—5— F(y)=F(x0,y)
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F(qy) (GeV)™
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Example of %6Fe

Note that at y>0 the
scaling is not good,
due to the presence
of resonances, meson
production, eftc.

(see later, however)



F(qy) (GeV)™
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Example of %6Fe

Note that at y>0 the
scaling is not good,
due to the presence
of resonances, meson
production, eftc.

(see later, however)

Scaling function
aty =-250 MeV/c
versus Q2 in (GeV/c)?

- approach to scaling



Next we introduce a characteristic momentum scale
for a given nuclear species

=0,

and use this to define a dimensionless function

f(q,y)=k,*F(q,y)

Correspondingly, one wishes to introduce a dimensionless
scaling variable @ and then to plot f(q,w) versus y for various
values of momentum transfer g



The Relativistic Fermi Gas (RFG) model is used to motivate the
choice of scaling variable.

In the RFG one has

... and a dimensionless scaling variable (/" which yields exact
1st-kind scaling for the RFG.



The Relativistic Fermi Gas (RFG) model is used to motivate the
choice of scaling variable.

In the RFG one has

... and a dimensionless scaling variable L/J’which yields exact
1st-kind scaling for the RFG;

roughly @’ = y/k,
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Scaling of the 2nd kind (A independence for y’<0)
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In the scaling region (w '<0) a universal behavior is seen, with

very little dependence on the nuclear species

!

SCALING OF THE 2nd KIND

In the region above g =0 where resonances, meson production and
the start of DIS enter the 2"d-kind scaling is not as good (see below)
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Although the amount of data separated into longitudinal (L) and transverse (T)
responses is small, one can attempt a scaling analysis with what does exist.
The inclusive cross section may be written

d’c
dQ . dw
v, :‘Qz/qz‘2
v, :%‘QZ /q2‘+tan2 0,12

=Op [VLRL(qia)) +Vr Ry (q,a))]

From which L and T scaling functions
can be defined as above

F (q,y)= R (q, @) as can their dimensionless analogs

A[Z:f'\fl :||_/JMVL B
o hae T e=keR@Y)
T(qiy)= A[zg‘:l :|T/JMVT fT (q, y) = kA.FT (q’ y)




What results is the following:

fL.(¥)
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What results is the following:

fr(¥')

2

_§§§ ] Inelastic contributions (mainly T)
L e + MEC (dominantly T)
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... however, still some residual below the QE peak
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What results is the following:
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Longitudinal response only (little from MEC or pion production):

06—

3 nuclei and
3 values of q

04—

f.(¥)

0.0

which is seen to be both independent of q (scaling of the 1st kind)
and also independent of nuclear species (scaling of the 2nd kind)

<> SUPERSCALING
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|

f.(¥)

Notes:
(1) Asymmetric shape; tail at high energy loss
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04—

f.(¥)

0.0+

RFG is restricted
to the range between

-1 and +1, is symmetric
and peaks at 0.75

Notes:
(1) Asymmetric shape; talil
(2) RFG very poor

TWD -1
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f.(¥)

02—

0.0

Notes:

(1) Asymmetric shape; tail at high energy loss
(2) RFG very poor

(3) Best models yield this shape: RMF approaches
Semi-rel approach
BCS-inspired model
Recent study with

correlations

(a
(b
(c
(d

)
)
)
)
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Note: in the RFG one has

[fL]RFG _ [ f.l. ]RFG _ [ f ]RFG

which has been called SCALING OF THE 0t KIND

If it were not for

« contributions from resonances, meson production
and DIS (which should not scale, since they involve different
elementary cross sections, not elastic eN scattering, and since
the scaling variables constructed above are appropriate only for
QE scattering; see the discussions to follow), and for

« effects from meson-exchange currents (dominantly in T)

one might expect scaling of the 0t kind to be found.



Large @ region

X > o 0O
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Breaking of 1st and 2"d kind
scaling at high ¢~



In the region above the QE peak one certainly expects inelastic
contributions to be important in the T response, although not so
in the L response



In the region above the QE peak one certainly expects inelastic
contributions to be important in the T response, although not so

in the L response
One also expects to have 2p-2h MEC contributions which add to
the response discussed above; again, these are mainly T, not L.

Typically they contribute 10-15% of the total and are one of the
reasons for the scaling violations in the T response seen above.



In the region above the QE peak one certainly expects inelastic
contributions to be important in the T response, although not so

in the L response

One also expects to have 2p-2h MEC contributions which add to

the response discussed above; again, these are mainly T, not L.
Typically they contribute 10-15% of|the total and are one of the
reasons for the scaling violations inthe T response seen above.

... see Lecture #2



In the region above the QE peak one certainly expects inelastic
contributions to be important in the T response, although not so
in the L response

One also expects to have 2p-2h MEC contributions which add to
the response discussed above; again, these are mainly T, not L.
Typically they contribute 10-15% of the total and are one of the

reasons for the scaling violations in the T response seen above.

... the net result of adding together the
universal L scaling function, the inelastic contributions obtained
using this as well, and the 2p-2h MEC contributions is in reasonable
agreement with experiment (see below).
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SuperScaling Approach (SuSA)

(1) Assume a universal scaling function, either phenomenological
from the longitudinal results shown above, or from models
(2) Use this together with elastic eN as above or inelastic eN — e'X
single-nucleon cross sections to obtain the QE and inel contributions
(3) Add 2-particle emission MEC contributions
(4) Use this universal approach to compare with inclusive ee’ data
(5) Replace the single-nucleon cross sections in (2) with CC or NC
neutrino reaction cross sections to obtain the SuUSA predictions
for the neutrino-nucleus cross sections



SuperScaling Approach (SuSA)

(1) Assume a universal scaling function, either phenomenological
from the longitudinal results shown above, or from models
(2) Use this together with elastic eN as above or inelastic eN — e'X
single-nucleon cross sections to obtain the QE and inel contributions
(3) Add 2-particle emission MEC contributions
(4) Use this universal approach to compare with inclusive ee’ data
(5) Replace the single-nucleon cross sections in (2) with CC or NC
neutrino reaction cross sections to obtain the SuUSA predictions
for the neutrino-nucleus cross sections

. of course, if the test in (4) fails, one should not expect to have very
good predictions for neutrino reactions, as is the case for simplistic
models such as the RFG
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d o/dw/dQ2 [nb]/[sr]/[MeV]
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d"o/dw/dQ [nb]/[sr]/[MeV]
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Longitudinal Scaling for C
q,..=570MeVic
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