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Neutrinos

Neutrinos proposed by Pauli in 1930 to conserve energy, momentum, and 
angular momentum in nuclear beta decay.

In 1956 Reines and Cowan 
detected anti-neutrinos from
Savannah River reactors:

⌫̄e + p ! n+ e+

n ! p+ e� + ⌫̄e

through coincidence of e+e- gamma rays and neutron capture.
Reines was a LANL T-division employee at the time.

Reines and Cowan were awarded the Nobel Prize in 1995.

Reines and Cowan discovered the electron (anti-) neutrino.
Later Lederman, Schwartz and Steinberger detected 
muon neutrino, receiving the Nobel Prize in 1988.
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Light Nuclear Spectra
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FIG. 2 GFMC energies of light nuclear ground and excited states for the AV18 and AV18+IL7 Hamiltonians compared to
experiment.

TABLE I AV18+IL7 GFMC results for A  12 nuclear ground states, compared to experimental values (Amroun et al., 1994;
NNDC, 2014; Nörtershäuser and et al., 2009; Nörtershäuser et al., 2011; Purcell et al., 2010; Shiner et al., 1994; Tilley et al.,
2002, 2004). Numbers in parentheses are statistical errors for the GFMC calculations or experimental errors; errors of less than
one in the last decimal place are not shown.

AZ(J⇡;T ) E (MeV) r
p

[r
n

] (fm) µ (µ
N

) Q (fm2)
GFMC Expt. GFMC Expt. GFMC Expt. GFMC Expt.

2H(1+; 0) �2.225 �2.2246 1.98 1.96 0.8604 0.8574 0.270 0.286
3H( 1

2

+

; 1

2

) �8.47(1) �8.482 1.59 [1.73] 1.58 2.960(1) 2.979
3He( 1

2

+

; 1

2

) �7.72(1) �7.718 1.76 [1.60] 1.76 �2.100(1) �2.127
4He(0+; 0) �28.42(3) �28.30 1.43 1.462(6)
6He(0+; 1) �29.23(2) �29.27 1.95(3) [2.88] 1.93(1)
6Li(1+; 0) �31.93(3) �31.99 2.39 2.45(4) 0.835(1) 0.822 0.1(2) �0.082(2)
7He( 3

2

�
; 3

2

) �28.74(3) �28.86 1.97 [3.32(1)]
7Li( 3

2

�
; 1

2

) �39.15(3) �39.25 2.25 [2.44] 2.31(5) 3.24(1) 3.256 �3.9(2) �4.06(8)
7Be( 3

2

�
; 1

2

) �37.54(3) �37.60 2.51 [2.32] 2.51(2) �1.42(1) �1.398(15) �6.6(2)
8He(0+; 2) �31.42(3) �31.40 1.83(2) [2.73] 1.88(2)
8Li(2+; 1) �41.14(6) �41.28 2.11 [2.47] 2.20(5) 1.48(2) 1.654 2.5(2) 3.27(6)
8Be(0+; 0) �56.5(1) �56.50 2.40(1)
8B(2+, 1) �37.51(6) �37.74 2.48 [2.10] 1.11(2) 1.036 5.9(4) 6.83(21)
8C(0+; 2) �24.53(3) �24.81 2.94 [1.85]
9Li( 3

2

�
, 3

2

) �45.42(4) �45.34 1.96 [2.33] 2.11(5) 3.36(4) 3.439 �2.3(1) �2.74(10)
9Be( 3

2

�
, 1

2

) �57.9(2) �58.16 2.31 [2.46] 2.38(1) �1.29(1) �1.178 5.1(1) 5.29(4)
9C( 3

2

�
, 3

2

) �38.88(4) �39.04 2.44 [1.99] �1.35(4) �1.391 �4.1(4)
10Be(0+; 1) �64.4(2) �64.98 2.20 [2.44] 2.22(2)
10B(3+; 0) �64.7(3) �64.75 2.28 2.31(1) 1.76(1) 1.801 7.3(3) 8.47(6)
10C(0+; 1) �60.2(2) �60.32 2.51 [2.25]
12C(0+; 0) �93.3(4) �92.16 2.32 2.33

Carlson, et al, arXiv:1412.3081

+ …



2.7 fm

e

e’
12C

quently discuss scaling and the related superscaling. For
light nuclei and nonrelativistic final states, exact calcula-
tions can be performed. For lower momentum transfers,
an alternative approach, the use of the Euclidean re-
sponse, is available and presented. We then study the
results obtained after a longitudinal/transverse !L /T"
separation of the cross section, and their impact on the
Coulomb sum rule. A bothersome correction, namely,
the effect of Coulomb distortion on the cross sections, is
addressed as well. We also show how data for an impor-
tant model system for nuclear theory, infinite nuclear
matter, can be obtained. Last, we address other fields of
quasielastic scattering and discuss their common aspects.

II. ELECTRON-NUCLEUS SCATTERING IN THE
IMPULSE APPROXIMATION

A. Electron-nucleus cross section

The differential cross section of the process

e + A → e! + X , !1"

in which an electron of initial four-momentum ke
#!Ee ,ke" scatters off a nuclear target to a state of four-
momentum ke!#!Ee! ,ke!", the target final state being un-
detected, can be written in the Born approximation as
!Itzykson and Zuber, 1980"

d2!

d"e!dEe!
=

#2

Q4

Ee!

Ee
L$%W$%, !2"

where #=1/137 is the fine-structure constant, d"e! is the
differential solid angle in the direction specified by ke!,
Q2=−q2, and q=ke−ke!#!& ,q" is the four-momentum
transfer.

The tensor L$%, which can be written neglecting the
lepton mass as

L$% = 2$ke
$ke!

% + ke
%ke!

$ − g$%!keke!"% , !3"

where g$%#diag!1,−1,−1,−1" and !keke!"=EeEe!
−ke ·ke! is fully specified by the measured electron kine-
matic variables. All information on target structure is
contained in the tensor W$%, whose definition involves
the initial and final nuclear states &0' and &X', carrying
four-momenta p0 and pX, as well as the nuclear current
operator J$,

W$% = (
X

)0&J$&X')X&J%&0''!4"!p0 + q − pX" , !4"

where the sum includes all hadronic final states.
The most general expression of the target tensor of

Eq. !4", fulfilling the requirements of Lorentz covari-
ance, conservation of parity, and gauge invariance, can
be written in terms of two structure functions W1 and W2
as

W$% = W1*− g$% +
q$q%

q2 +
+

W2

M2*p0
$ −

!p0q"
q2 q$+*p0

% −
!p0q"

q2 q%+ , !5"

where M is the target mass and the structure functions
depend on the two scalars Q2 and !p0q". In the target
rest frame, !p0q"=m& and W1 and W2 become functions
of the measured momentum and energy transfer &q& and
&.

Substitution of Eq. !5" into Eq. !2" leads to

d2!

d"e!dEe!
= * d!

d"e!
+

M

( ,W2!&q&,&" + 2W1!&q&,&"tan2)

2- , !6"

where ) and !d! /d"e!"M=#2 cos2!) /2" /4Ee sin4!) /2" de-
note the electron scattering angle and the Mott cross
section, respectively.

The right-hand side of Eq. !6" can be rewritten sin-
gling out the contributions of scattering processes in-
duced by longitudinally !L" and transversely !T" polar-
ized virtual photons. The resulting expression is

d2!

d"e!dEe!
= * d!

d"e!
+

M
, Q4

&q&4
RL!&q&,&"

+ *1
2

Q2

&q&2
+ tan2)

2
+RT!&q&,&"- , !7"

where the longitudinal and transverse structure func-
tions are trivially related to W1 and W2 through

RT!&q&,&" = 2W1!&q&,&" !8"

and

Q2

&q&2
RL!&q&,&" = W2!&q&,&" −

Q2

&q&2
W1!&q&,&" . !9"

In principle, calculations of W$% of Eq. !4" at moder-
ate momentum transfer !&q & *0.5 GeV/c" can be carried
out within nuclear many-body theory !NMBT", using
nonrelativistic wave functions to describe the initial and
final states and expanding the current operator in pow-
ers of &q & /m !Carlson and Schiavilla, 1998", where m is
the nucleon mass. The available results for medium-
heavy targets have been obtained mostly using the
mean-field approach, supplemented by inclusion of
model residual interactions to take into account long-
range correlations !Dellafiore et al., 1985".

FIG. 2. Schematic representation of the IA regime, in which
the nuclear cross section is replaced by the incoherent sum of
cross sections describing scattering off individual nucleons, the
recoiling !A−1"-nucleon system acting as a spectator.
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I. INTRODUCTION

The energy spectrum of high-energy leptons !elec-
trons in particular" scattered from a nuclear target dis-
plays a number of features. At low energy loss !"",

peaks due to elastic scattering and inelastic excitation of
discrete nuclear states appear; a measurement of the
corresponding form factors as a function of momentum
transfer #q# gives access to the Fourier transform of
nuclear !transition" densities. At larger energy loss, a
broad peak due to quasielastic electron-nucleon scatter-
ing appears; this peak—very wide due to nuclear Fermi
motion—corresponds to processes by which the electron
scatters from an individual, moving nucleon, which, after
interaction with other nucleons, is ejected from the tar-
get. At even larger ", peaks that correspond to excita-
tion of the nucleon to distinct resonances are visible. At
very large ", a structureless continuum due to deep in-
elastic scattering !DIS" on quarks bound in nucleons ap-
pears. A schematic spectrum is shown in Fig. 1. At mo-
mentum transfers above approximately 500 MeV/c, the
dominant feature of the spectrum is the quasielastic
peak.

*benhar@roma1.infn.it
†dbd@virginia.edu
‡ingo.sick@unibas.ch

FIG. 1. Schematic representation of inclusive cross section as a
function of energy loss.
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Electron Scattering:
Longitudinal and Transverse Response

RT (q,!) =
X

f

h0| j†(q) |fihf | j(q) |0i �(w � (Ef � E0))

Transverse (current) response:

RL(q,!) =
X

f

h0| ⇢†(q) |fihf | ⇢(q) |0i �(w � (Ef � E0))

Longitudinal (charge) response:

Two-nucleon currents required by current conservation
Response depends upon all the excited states of the nucleus
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excited to the continuum. The correlation ridge at E
!k2 /2m "see Eq. #28$% is clearly visible. Note that, in the
absence of interactions, the surface shown in Fig. 3 col-
lapses to a collection of !-function peaks distributed
along the line &E & =k2 /2m, with &k & "kF'250 MeV/c.

The proton spectral functions of nuclei with A#4
have been modeled using the local density approxima-
tion #LDA$ #Benhar et al., 1994$, in which the experi-
mental information obtained from nucleon knock-out
measurements is combined with theoretical calculations
of the nuclear matter S#k ,E$ at different densities.

The kinematic region corresponding to low missing
energy and momentum, where shell-model dynamics
dominates, has been studied extensively by coincidence
#e ,e!p$ experiments. The spectral function extracted
from the data is usually written in the factorized form
"compare to Eq. #27$%

SMF#k,E$ = (
n!)F*

Zn&$n#k$&2Fn#E − En$ , #30$

where the spectroscopic factor Zn"1 and the function
Fn#E−En$, describing the energy width of the nth state,
account for the effects of residual interactions not in-
cluded in the mean-field picture. In the Zn→1 and
Fn#E−En$→!#E−En$ limit, Eq. #30$ reduces to Eq. #27$.

The correlation contribution to the nuclear matter
spectral function has been calculated using CBF pertur-
bation theory for a wide range of density values #Benhar
et al., 1994$. Within the LDA scheme, these results can
be used to obtain the corresponding quantity for a finite
nucleus of mass number A from

Scorr#k,E$ =+ d3r%A#r$Scorr
NM„k,E ;% = %A#r$… , #31$

where %A#r$ is the nuclear density distribution and
Scorr

NM#k ,E ;%$ is the correlation part of the spectral func-
tion of uniform nuclear matter at density %. The corre-
lation part of the nuclear matter spectral function can be
easily singled out at zeroth order of CBF, being associ-
ated with two-hole–one-particle intermediate states. At
higher orders, however, one-hole and two-hole–one-
particle states are coupled, and the identification of the
correlation contributions becomes more involved. A full
account of the calculation of Scorr

NM#k ,E$ can be found in
Benhar et al. #1994$.

The full LDA spectral function is written in the form

SLDA#k,E$ = SMF#k,E$ + Scorr#k,E$ , #32$

the spectroscopic factors Zn of Eq. #30$ being con-
strained by the normalization requirement

+ d3kdESLDA#k,E$ = 1. #33$

A somewhat different implementation of LDA has
also been proposed #Van Neck et al., 1995$. Within this
approach, the nuclear matter spectral function is only
used at k#kF#r$, kF#r$ being the local Fermi momen-
tum, whereas the correlation background at k"kF#r$ is

incorporated in the generalized mean-field contribution.
Comparison between the resulting oxygen momentum
distribution and that obtained by Benhar et al. shows
that they are in almost perfect agreement.

The LDA scheme is based on the premise that short-
range nuclear dynamics are unaffected by surface and
shell effects. The validity of this assumption is supported
by the results of theoretical calculations of the nucleon
momentum distribution

n#k$ =+ dE"ZSp#k,E$ + #A − Z$Sn#k,E$% , #34$

showing that for A&4 the quantity n#k$ /A becomes
nearly independent of A at large &k& #'300 MeV/c$. This
feature, illustrated in Fig. 4, suggests that the correlation
part of the spectral function also scales with the target
mass number, so that Scorr

NM#k ,E$ can be used to approxi-
mate Scorr#k ,E$ at finite A.

A direct measurement of the correlation component
of the spectral function of 12C, from the #e ,e!p$ cross
section at missing momentum and energy up to
!800 MeV/c and !200 MeV, respectively, was carried
out by the JLab E97-006 Collaboration #Rohe, 2004$.
The data from the preliminary analysis appear to be
consistent with the theoretical predictions based on
LDA.

D. Contribution of inelastic processes

The approach described in the previous sections is not
limited to quasielastic processes. The tensor defined in
Eqs. #18$ and #19$ describes electromagnetic transitions
of the struck nucleon to any hadronic final state.

To take into account the possible production of had-
rons other than protons and neutrons, one has to replace
w1

N and w2
N given by Eqs. #23$ and #24$ with the inelastic

nucleon structure functions extracted from the analysis
of electron-proton and electron-deuteron scattering data
#Bodek and Ritchie, 1981$. The resulting IA cross sec-

FIG. 4. Calculated momentum distribution per nucleon in 2H,
4He, 16O, and uniform nuclear matter #Schiavilla et al., 1986;
Benhar et al., 1993$.
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Momentum Distributions and Spectral Functions

Schiavilla, et al 1986, Benhar, et al 1993

n, En is the corresponding energy eigenvalue, and the
sum is extended to all occupied states belonging to the
Fermi sea !F".

The results of electron- and hadron-induced nucleon
knock-out experiments have provided overwhelming
evidence of the inadequacy of the independent-particle
model to describe the full complexity of nuclear dynam-
ics. While the peaks corresponding to knock-out from
shell-model orbits can be clearly identified in the mea-
sured energy spectra, the corresponding strengths turn
out to be consistently and sizably lower than expected,
independent of the nuclear mass number.

This discrepancy is mainly due to the effect of dy-
namical correlations induced by the nucleon-nucleon
#NN$ force, whose effect is not taken into account in the
independent-particle model. Correlations give rise to
scattering processes, leading to the virtual excitation of
the participating nucleons to states of energy larger than
the Fermi energy, thus depleting the shell-model states
within the Fermi sea. As a result, the spectral function
acquires tails extending to the region of large energy and
momentum, where SSM#k ,E$ of Eq. #27$ vanishes.

The typical energy scale associated with NN correla-
tions can be estimated considering a pair of correlated
nucleons carrying momenta k1 and k2 much larger than
the Fermi momentum #%250 MeV/c$. In the nucleus
rest frame, where the remaining A−2 particles carry low
momenta, k1&−k2=k. Hence, knock-out of a nucleon of
large momentum k leaves the residual system with a par-
ticle in the continuum and requires an energy

E & Ethr + k2/2m , #28$

much larger than the typical energies of shell-model
states #%30 MeV$. The above equation, where Ethr de-
notes the threshold for two-nucleon removal, shows that
large removal energy and large nucleon momentum are
strongly correlated.

Realistic theoretical calculations of the spectral func-
tion have been carried out within NMBT, according to
which the nucleus consists of a collection of A nucleons
whose dynamics are described by the nonrelativistic
Hamiltonian

H = '
i=1

A ki
2

2m
+ '

j!i=1

A

vij + '
k!j!i=1

A

Vijk. #29$

In the above equation, ki is the momentum of the ith
constituent and vij and Vijk describe two- and three-
nucleon interactions, respectively. The two-nucleon po-
tential, which reduces to the Yukawa one-pion-exchange
potential at large internucleon distance, is obtained from
an accurate fit to the available data on the two-nucleon
system, i.e., deuteron properties and %4000 NN scatter-
ing data #Wiringa et al., 1995$. The additional three-body
term Vijk has to be included in order to account for the
binding energies of the three-nucleon bound states #Pud-
liner et al., 1995$ and the empirical saturation properties
of uniform nuclear matter #Akmal and Pandharipande,
1997$; this term results from the fact that non-nucleonic
constituents #such as "’s$ have been excluded.

The many-body Schrödinger equation associated with
the Hamiltonian of Eq. #29$ can be solved exactly, using
stochastic methods, for nuclei with mass number A
#12. The resulting energies of the ground and low-lying
excited states are in excellent agreement with the ex-
perimental data #Pieper and Wiringa, 2001$. Accurate
calculations can also be carried out for uniform nuclear
matter, exploiting translational invariance and using ei-
ther a variational approach based on cluster expansion
and chain summation techniques #Akmal and Pandhari-
pande, 1997$ or G-matrix perturbation theory #Baldo et
al., 2000$.

Nonrelativistic NMBT has been employed to obtain
the spectral functions of the three-nucleon systems #Die-
perink et al., 1976; Ciofi degli Atti et al., 1980; Meier-
Hajduk et al., 1983$, oxygen #Geurts et al., 1996; Polls et
al., 1997$, and symmetric nuclear matter, having A→$
and Z=A /2 #Benhar et al., 1989; Ramos et al., 1989$.
Calculations based on NMBT but involving some simpli-
fying assumptions have also been carried out for 4He
#Ciofi degli Atti et al., 1990; Morita and Suzuki, 1991;
Benhar and Pandharipande, 1993$.

As an example, Fig. 3 shows the results of a nuclear
matter calculation2 carried out using correlated basis
function #CBF$ perturbation theory #Benhar et al., 1989$.
In addition to the peaks corresponding to single-particle
states, i.e., to bound one-hole states of the
#A−1$-nucleon system, the resulting SN#k ,E$ exhibits a
broad background, extending up to E%200 MeV and
(k ( %800 MeV/c, associated with n-hole #n−1$-particle
#A−1$-nucleon states in which at least one nucleon is

2As in symmetric nuclear matter Sp#k ,E$=Sn#k ,E$, the spec-
tral function shown corresponds to an isoscalar nucleon.

FIG. 3. Nuclear matter spectral function calculated using cor-
related basis function perturbation theory. From Benhar et al.,
1989.
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Benhar, 1989

One-body formulation gives equal longitudinal and transverse response
(once single-nucleon form factors divided out)

quently discuss scaling and the related superscaling. For
light nuclei and nonrelativistic final states, exact calcula-
tions can be performed. For lower momentum transfers,
an alternative approach, the use of the Euclidean re-
sponse, is available and presented. We then study the
results obtained after a longitudinal/transverse !L /T"
separation of the cross section, and their impact on the
Coulomb sum rule. A bothersome correction, namely,
the effect of Coulomb distortion on the cross sections, is
addressed as well. We also show how data for an impor-
tant model system for nuclear theory, infinite nuclear
matter, can be obtained. Last, we address other fields of
quasielastic scattering and discuss their common aspects.

II. ELECTRON-NUCLEUS SCATTERING IN THE
IMPULSE APPROXIMATION

A. Electron-nucleus cross section

The differential cross section of the process

e + A → e! + X , !1"

in which an electron of initial four-momentum ke
#!Ee ,ke" scatters off a nuclear target to a state of four-
momentum ke!#!Ee! ,ke!", the target final state being un-
detected, can be written in the Born approximation as
!Itzykson and Zuber, 1980"

d2!

d"e!dEe!
=

#2

Q4

Ee!

Ee
L$%W$%, !2"

where #=1/137 is the fine-structure constant, d"e! is the
differential solid angle in the direction specified by ke!,
Q2=−q2, and q=ke−ke!#!& ,q" is the four-momentum
transfer.

The tensor L$%, which can be written neglecting the
lepton mass as

L$% = 2$ke
$ke!

% + ke
%ke!

$ − g$%!keke!"% , !3"

where g$%#diag!1,−1,−1,−1" and !keke!"=EeEe!
−ke ·ke! is fully specified by the measured electron kine-
matic variables. All information on target structure is
contained in the tensor W$%, whose definition involves
the initial and final nuclear states &0' and &X', carrying
four-momenta p0 and pX, as well as the nuclear current
operator J$,

W$% = (
X

)0&J$&X')X&J%&0''!4"!p0 + q − pX" , !4"

where the sum includes all hadronic final states.
The most general expression of the target tensor of

Eq. !4", fulfilling the requirements of Lorentz covari-
ance, conservation of parity, and gauge invariance, can
be written in terms of two structure functions W1 and W2
as

W$% = W1*− g$% +
q$q%

q2 +
+

W2

M2*p0
$ −

!p0q"
q2 q$+*p0

% −
!p0q"

q2 q%+ , !5"

where M is the target mass and the structure functions
depend on the two scalars Q2 and !p0q". In the target
rest frame, !p0q"=m& and W1 and W2 become functions
of the measured momentum and energy transfer &q& and
&.

Substitution of Eq. !5" into Eq. !2" leads to

d2!

d"e!dEe!
= * d!

d"e!
+

M

( ,W2!&q&,&" + 2W1!&q&,&"tan2)

2- , !6"

where ) and !d! /d"e!"M=#2 cos2!) /2" /4Ee sin4!) /2" de-
note the electron scattering angle and the Mott cross
section, respectively.

The right-hand side of Eq. !6" can be rewritten sin-
gling out the contributions of scattering processes in-
duced by longitudinally !L" and transversely !T" polar-
ized virtual photons. The resulting expression is

d2!

d"e!dEe!
= * d!

d"e!
+

M
, Q4

&q&4
RL!&q&,&"

+ *1
2

Q2

&q&2
+ tan2)

2
+RT!&q&,&"- , !7"

where the longitudinal and transverse structure func-
tions are trivially related to W1 and W2 through

RT!&q&,&" = 2W1!&q&,&" !8"

and

Q2

&q&2
RL!&q&,&" = W2!&q&,&" −

Q2

&q&2
W1!&q&,&" . !9"

In principle, calculations of W$% of Eq. !4" at moder-
ate momentum transfer !&q & *0.5 GeV/c" can be carried
out within nuclear many-body theory !NMBT", using
nonrelativistic wave functions to describe the initial and
final states and expanding the current operator in pow-
ers of &q & /m !Carlson and Schiavilla, 1998", where m is
the nucleon mass. The available results for medium-
heavy targets have been obtained mostly using the
mean-field approach, supplemented by inclusion of
model residual interactions to take into account long-
range correlations !Dellafiore et al., 1985".

FIG. 2. Schematic representation of the IA regime, in which
the nuclear cross section is replaced by the incoherent sum of
cross sections describing scattering off individual nucleons, the
recoiling !A−1"-nucleon system acting as a spectator.
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Simple view of inclusive QE scattering from nuclei

Charge distributions of different Nuclei:

figure from faculty.virginia.edu/ncd
based on work of Hofstadter, et al.: Nobel Prize 1961

Inclusive scattering measures nuclear 
properties at distances ~ π / q  ≲ 1 fm
 essentially independent of which nucleus!

9

to |q| ⇠ 1 GeV.data at fixed kinematics, all A:
excellent scaling of 2d kind, occurs at all q

valid out to large |�0|FIG. 9 (color online) Illustration of scaling of second kind,
or superscaling. The scaling functions for nuclei with mass
number 12  A  197, obtained from the data of Day et al.

(1987) at beam energy Ee = 3.6 GeV and electron scattering
angle ✓e = 16 deg, corresponding to |q| ⇠ 1 GeV, are shown
as a function of the variable  0 = y/kF (Donnelly and Sick,
1999).

Besides allowing to identify the dominant reaction
mechanism, the occurrence of superscaling can be ex-
ploited to predict the nuclear cross section for kinemat-
ical regions and targets not covered by the available
data, although the contributions of mechanisms leading
to large scaling violations, such as final state interaction
and MEC, can only be described within a specific nuclear
model. The universal scaling function extracted from
electron scattering data has been extensively used to ob-
tain both charged- and neutral-current neutrino-nucleus
cross sections (Amaro et al., 2007; Mart́ınez et al., 2008).

D. Two-nucleon currents and 2p2h final states

In addition to NN correlations in the initial and fi-
nal states, interactions involving electromagnetic two-
nucleon currents, arising from processes in which the pho-
ton couples to a meson exchanged between two nucleons,
also lead to the excitation of 2p2h final states. As an
example, the simplest such processes contributing to the
electron scattering cross section are depicted in Fig. 10.

The two-body currents are linked to the potential de-
scribing NN interactions through the continuity equation
(3), establishing a relation between the nuclear hamilto-
nian H and the longitudinal component of the current
Jµ. As a consequence, the operator Jµ can be separated
into model-dependent and model-independent contribu-
tions, the latter being determined from the NN potential
(Riska, 1989).

As pointed out above, in the regime of low to mod-
erate momentum transfer the nuclear matrix element of

the two-nucleon current can be evaluated using realis-
tic nuclear wave functions, obtained within the frame-
work of NMBT, and a non relativistic reduction of the
current operator, based on the expansion in powers of
|q|/m (Carlson and Schiavilla, 1998). The model-de-
pendent component of the current, being transverse in
nature, is not determined by the NN potential. Exist-
ing calculations typically take into account the isoscalar
⇢⇡� and isovector !⇡� transition currents, as well as the
isovector current associated with excitation of intermedi-
ate �-isobar resonances. The two-body charge operators
include the ⇡-, ⇢-, and !-meson exchange charge oper-
ators, the (isoscalar) ⇢⇡� and (isovector) !⇡� couplings
and the single-nucleon Darwin-Foldy and spin-orbit rel-
ativistic corrections (Schiavilla et al., 1990).

(a) (b) (c)

FIG. 10 Diagrams depicting processes contributing to the
electromagnetic two-nucleon current. Oriented lines corre-
spond to nucleons, while the wavy and dashed lines are asso-
ciated with photons and exchanged mesons, respectively.

The role of the two nucleon current in electron scat-
tering is best illustrated by comparing the longitudinal
and transverse contributions to the scaling function F (y),
discussed in Section III.C.

It is important to recall that the occurrence of scal-
ing provides a strong handle on the identification of the
reaction mechanism, while the observation of scaling vi-
olations reveals the role played by processes beyond the
IA. In this context, valuable information is provided by
the scaling analysis of the longitudinal (L) and trans-
verse (T) contributions to the measured cross sections
(see Eq. (10)).

Figure 11 shows the y-dependence of the L and T scal-
ing functions obtained by Finn et al. (1984) using the
corresponding carbon responses, extracted from the cross
sections measured by Barreau et al. (1983). The onset of
scaling is manifest in the region of the quasi free peak,
corresponding to y ⇠ 0, where the data points at di↵er-
ent momentum transfer tend to sit on top of one another
as |q| increases. On the other hand, large scaling vio-
lations, mainly arising from non QE processes, such as
resonance production, are clearly visible in the transverse
channel at y > 0, corresponding to ! > !

QE

. In addi-
tion, the T scaling function turns out to be significantly
enhanced, with respect to the L one, while within the
IA picture—neglecting the small convection terms in the
nucleon current—the L and T responses are predicted to
be identical.

The results of highly accurate calculations carried out
for light nuclei in the non relativistic regime strongly sug-
gest that in the quasi elastic region single nucleon knock-

Scaling (2nd kind) different nuclei

Slightly different kF for different nuclei
Donnelly and Sick, 1999

➯



duce large effects in combination with ground-state
wave functions calculated including the short-range n-p
correlations. As most previous calculations were based
on independent-particle-type wave functions, the small-
ness of the resulting MEC contributions is thus under-
stood. To verify this point further, Carlson et al. have
repeated their calculation using the same operators, but
with a Fermi-gas wave function. Instead of an enhance-
ment factor of 1.47 coming from MEC at !q !
=600 MeV/c, they find a factor of 1.06 only, i.e., an eight
times smaller MEC effect.

The results of Carlson et al. also show, somewhat sur-
prisingly, that the MEC contribution is large at low mo-
mentum transfer. It decreases toward the larger Q2, in
agreement with the expectation that at very large Q2 it
falls "Sargsian, 2001# like Q−4 relative to quasielastic
scattering.

From the above discussion it becomes clear that the
Euclidean response, despite inherent drawbacks, is a
valuable quantity. Since the final continuum state does
not have to be treated explicitly, calculations of much
higher quality can be performed than for the response,
and the role of two-body currents can be treated quan-
titatively. Comparison between data and calculation has
shown in particular that for a successful prediction of
MEC, correlated wave functions for the ground state are
needed; such wave functions today are available up to
A$12 and for A=!. Unfortunately, the usage of the
Euclidean response for the time being is restricted to a
regime in which relativistic effects are not too large,
such that they can be included as corrections.

X. L ÕT SEPARATION AND COULOMB SUM RULE

In the impulse approximation, and when neglecting
the "small# contribution from nucleonic convection cur-
rents, the longitudinal and transverse response functions
RL and RT contain the same information and have the
same size. This has sometimes been called scaling of the
zeroth kind "see Sec. VII#. It was realized early on, how-
ever, that the transverse response receives significant
contributions from meson exchange currents and " ex-
citation "which are of a largely transverse nature#. It is
therefore clear that there is a high premium on separat-
ing the L and T responses, both because the L response
is easier to interpret and because of the additional infor-
mation contained in the T response.

The separation of the L and T responses is performed
using the Rosenbluth technique, which is justified only
in the single-photon exchange approximation. The cross
section, divided by a number of kinematical factors

d#

d$d%

&

#Mott

!q!4

Q4 = &RL"!q!,%# +
!q!2

2Q2RT"!q!,%# = ' ,

"65#

is a linear function of the virtual photon polarization

& = %1 +
2!q!2

Q2 tan2(

2
&−1

"66#

with q "Q# being the 3- "4-# momentum transfer and &
varying from 0 to 1 for scattering angles ( between 180°
and 0°. The slope of the linear function yields RL and
the intercept at &=0 yields RT. Figure 30 shows an early
example for an L /T separation, and demonstrates the
excess observed for the transverse strength.

While conceptually very straightforward, this L/T
separation is difficult in practice. It involves data taking
at the same !q!, but varying &, i.e., varying beam energy.
For an accurate separation of RL and RT, obviously the
largest possible range in &, hence beam energy, is re-
quired. As data are usually not taken at constant !q!, but
at a given beam energy and variable energy loss, obtain-
ing the responses at constant !q! involves interpolations
of the data. We show in Fig. 31 two examples for a
Rosenbluth separation, performed on the low- and
large-% side of the quasielastic peak, which also illus-
trate the importance of the forward angle "high-energy#
data for the determination of RL, i.e., the slope of the fit.

The Rosenbluth technique is applicable in the plane-
wave Born approximation, and fails once Coulomb dis-
tortion of the electron waves is present. Neglect of dis-
tortion is justified for the lightest nuclei alone, and only
if RT is not much bigger "or much smaller# than RL.
When one of the two contributions gets too small, even
minor corrections due to Coulomb distortion can have
large effects. At large !q!, for instance, even the determi-
nation of the proton charge form factor via the Rosen-
bluth technique is significantly affected by Coulomb cor-
rections "Arrington and Sick, 2004#. In order to extract
RL and RT in the presence of Coulomb distortion, the
data must first be corrected for these effects; this is dis-
cussed in Sec. XI.

Here we concentrate on the discussion of the longitu-

FIG. 30. Longitudinal "lower data set# and transverse re-
sponses of 12C "Finn et al., 1984#, plotted in terms of the scaling
function F"y#.
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(e, e′) Inclusive Response: Scaling Analysis

Donnelly and Sick (1999)

3He 4He

Scaling variables: ψ′ ≃ y/kF and fL,T = kF RL,T /GL,T

Data at variance with PWIA expectation that fL ≃ fT

Excess strength, especially for 4He, in transverse response

14

Single nucleon couplings factored out
Momenta of order inverse internucleon spacing:
Large enhancement of transverse over longitudinal response
Requires beyond single nucleon physics



12C calculations:

GFMC for ground-state
+ current correlation matrix elements

~ 45 M core-hours

2A = 4096 spin amplitudes x 
12!/(6!6!) = 924 isospin amplitudes 
           (charge basis) for each sample 

ADLB

http://www.mcs.anl.gov/project/adlb-asynchronous-dynamic-load-balancer

Lusk, Pieper, …

computingnuclei.org

 0 = exp [�H⌧ ]  T
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(purely imaginary) RME’s of magnetic multipole oper-
ators is [J � 1/2] + 1, and the allowed L’s are the odd
integers between 0 and 2 J . In the case of a J = 1 nu-
cleus, for example, it is possible to take q along the x̂

axis (✓ = ⇡/2), and determine M1 ⌘ h1||M1(q)||1i from
h11; q x̂ | jy(q x̂) | 11i =

p
⇡M1 . (117)

Finally, the small q behavior of the charge monopole
and quadrupole, and magnetic dipole RME’s is given by:

hJ ||C0(q = 0)||Ji =
r

2 J + 1

4⇡
Z , (118)

hJ ||C2(q)||Ji ' 1

12
p
⇡ c2J

q2 Q , J � 1 , (119)

hJ ||M1(q)||Ji ' ip
2⇡ c1J

q

2m
µ , J � 1/2 , (120)

where Q and µ are the quadrupole moment and mag-
netic moment, defined in terms of matrix elements of the
charge and current density operators j0�(x) and j�(x) re-
spectively as

Q = hJJ |
Z

dx j0�(x) (3 z
2 � x

2) | JJi , (121)

µ

2m
= hJJ | 1

2

Z
dx [x⇥ j�(x)]z | JJi . (122)

They are determined by extrapolating to zero a polyno-
mial fit (in powers of q2) to the calculated C2/q2 and
M1/q on a grid of small q values. Consequently, the lon-
gitudinal form factor at q = 0 is normalized as

F 2
L (q = 0) =

Z2

4⇡
, (123)

while the transverse form factor F 2
T (q) vanishes at q = 0.

Note that experimental data for F 2
L (q) are often reported

in the literature as normalized to one at q = 0.
In QMC, matrix elements are evaluated as described

in Sec. III.B.2. The results of elastic and inelastic elec-
tromagnetic form factors for 6Li are shown in Fig. 15.
The calculations have been performed within the im-
pulse approximation (IA), and two-body operators added
(IA+MEC). Overall, the agreement with the experimen-
tal data is excellent. The contribution of MEC is gen-
erally small but its inclusion improve the agreement be-
tween theory and data. In particular, the inclusion of
MEC shift the longitudinal form factor (both elastic and
inelastic) to slightly lower values, and sensibly increase
the transverse inelastic.

In Fig. 16 the longitudinal form factor of 12C is shown.
The calculation has been performed including only one-
body operators (empty symbols), and one- plus two-body
operators (Lovato et al., 2013). The experimental data
are from a compilation by Sick (1982, 2013), and are well
reproduced by theory over the whole range of momentum
transfers. The two-body contributions are negligible at
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FIG. 15 The 6Li longitudinal elastic (upper left panel), in-
elastic (bottom left), and transverse elastic (upper right), and
inelastic (bottom right) calculated with VMC in the impulse
approximation (IA), and with the addition of MEC contri-
butions. The results are compared to the experimental data
indicated in the legend.
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FIG. 16 The longitudinal elastic form factor of 12C calculated
including one- (empty circles) and one- plus two-body oper-
ators (red filled circles) calculated with GFMC. The results
are compared to the experimental data.
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FIG. 17 GFMC propagated energy versus imaginary time for
the first two 0+ states of 12C.

low q, and become appreciable only for q > 3 fm�1, where
they interfere destructively with the one-body contribu-
tions bringing theory into closer agreement with experi-
ment.

D. Second 0+ state of 12C: Hoyle state

The second 0+ state of 12C is the famous Hoyle state,
the gateway for the triple-alpha burning reaction in stars.
It is a particularly di�cult state for shell model calcula-
tions as it is predominantly a four-particle four-hole state.
However the flexible nature of the variational trial func-
tions allows to directly describe this aspect of the state.

To do this two di↵erent types of single-particle wave
functions have been used in the |�N i of Eq. (30): 1) the
five conventional 0+ LS-coupled shell model states and
2) states that have an explicit three-alpha structure; the
first alpha is in the 0s shell, the second in the 0p shell and
the third in either the 0p or 1s0d shells. The latter can
have four nucleons in 1s or four in 0d or two in 1s and
two in 0d. In addition we allow the third alpha to have
two nucleons in 0p and two in 1s0d (a two-particle two-
hole excitation). This gives us a total of 11 components
in |�N i; a diagonalization gives the  T for the ground
and excited 0+ states.

The resulting ground state has less than 1% of its  T

in the 1s0d shell while the second state has almost 70% in
the 1s0d shell. The GFMC propagation is then done for
the first two states; the resulting energies are shown as a
function of imaginary time ⌧ in Fig. 17 which has results
for two di↵erent initial sets of  T . The GFMC rapidly
improves the variational energy and then produces stable,
except for Monte Carlo fluctuations, results to large ⌧ .
The resulting ground state energy is very good, �93.3(4)
MeV versus the experimental value of �92.16 MeV. How-
ever the Hoyle state excitation energy is somewhat too
high, 10.4(5) versus 7.65 MeV.

Figure 18 shows the resulting VMC and GFMC den-
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FIG. 18 VMC and GFMC point-proton densities for the first
two 0+ states of 12C. The experimental band was unfolded
from electron scattering data in Ref. (De Vries et al., 1987)
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FIG. 19 VMC and GFMC E0 transition form factor between
the first two 0+ states of 12C in the impulse approximation.
The data is from Chernykh et al. (2010)

sities for one of the sets of  T . The GFMC propagation
builds a dip at r = 0 into the ground-state density which
results in good agreement with the experimental value.
However the Hoyle-state density is peaked at r = 0 in
both the VMC and GFMC calculations. A possible in-
terpretation of these results is that the ground state is
dominated by an approximately equilateral distribution
of alphas while the Hoyle state has an approximately lin-
ear distribution.

The calculated impulse E0 transition form factor is
compared to the experimental data in Fig. 19. The insert
is scaled such that (linear) extrapolation to k2 = 0 gives
the B(E0). The GFMC more than doubles the VMC
result and gives excellent agreement with the data.

Hoyle state transition form factor

Currents and elastic/transition form factors

2 Nucleon charge operators
(relativistic corrections)

are small
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duce large effects in combination with ground-state
wave functions calculated including the short-range n-p
correlations. As most previous calculations were based
on independent-particle-type wave functions, the small-
ness of the resulting MEC contributions is thus under-
stood. To verify this point further, Carlson et al. have
repeated their calculation using the same operators, but
with a Fermi-gas wave function. Instead of an enhance-
ment factor of 1.47 coming from MEC at !q !
=600 MeV/c, they find a factor of 1.06 only, i.e., an eight
times smaller MEC effect.

The results of Carlson et al. also show, somewhat sur-
prisingly, that the MEC contribution is large at low mo-
mentum transfer. It decreases toward the larger Q2, in
agreement with the expectation that at very large Q2 it
falls "Sargsian, 2001# like Q−4 relative to quasielastic
scattering.

From the above discussion it becomes clear that the
Euclidean response, despite inherent drawbacks, is a
valuable quantity. Since the final continuum state does
not have to be treated explicitly, calculations of much
higher quality can be performed than for the response,
and the role of two-body currents can be treated quan-
titatively. Comparison between data and calculation has
shown in particular that for a successful prediction of
MEC, correlated wave functions for the ground state are
needed; such wave functions today are available up to
A$12 and for A=!. Unfortunately, the usage of the
Euclidean response for the time being is restricted to a
regime in which relativistic effects are not too large,
such that they can be included as corrections.

X. L ÕT SEPARATION AND COULOMB SUM RULE

In the impulse approximation, and when neglecting
the "small# contribution from nucleonic convection cur-
rents, the longitudinal and transverse response functions
RL and RT contain the same information and have the
same size. This has sometimes been called scaling of the
zeroth kind "see Sec. VII#. It was realized early on, how-
ever, that the transverse response receives significant
contributions from meson exchange currents and " ex-
citation "which are of a largely transverse nature#. It is
therefore clear that there is a high premium on separat-
ing the L and T responses, both because the L response
is easier to interpret and because of the additional infor-
mation contained in the T response.

The separation of the L and T responses is performed
using the Rosenbluth technique, which is justified only
in the single-photon exchange approximation. The cross
section, divided by a number of kinematical factors

d#

d$d%

&

#Mott

!q!4

Q4 = &RL"!q!,%# +
!q!2

2Q2RT"!q!,%# = ' ,

"65#

is a linear function of the virtual photon polarization

& = %1 +
2!q!2

Q2 tan2(

2
&−1

"66#

with q "Q# being the 3- "4-# momentum transfer and &
varying from 0 to 1 for scattering angles ( between 180°
and 0°. The slope of the linear function yields RL and
the intercept at &=0 yields RT. Figure 30 shows an early
example for an L /T separation, and demonstrates the
excess observed for the transverse strength.

While conceptually very straightforward, this L/T
separation is difficult in practice. It involves data taking
at the same !q!, but varying &, i.e., varying beam energy.
For an accurate separation of RL and RT, obviously the
largest possible range in &, hence beam energy, is re-
quired. As data are usually not taken at constant !q!, but
at a given beam energy and variable energy loss, obtain-
ing the responses at constant !q! involves interpolations
of the data. We show in Fig. 31 two examples for a
Rosenbluth separation, performed on the low- and
large-% side of the quasielastic peak, which also illus-
trate the importance of the forward angle "high-energy#
data for the determination of RL, i.e., the slope of the fit.

The Rosenbluth technique is applicable in the plane-
wave Born approximation, and fails once Coulomb dis-
tortion of the electron waves is present. Neglect of dis-
tortion is justified for the lightest nuclei alone, and only
if RT is not much bigger "or much smaller# than RL.
When one of the two contributions gets too small, even
minor corrections due to Coulomb distortion can have
large effects. At large !q!, for instance, even the determi-
nation of the proton charge form factor via the Rosen-
bluth technique is significantly affected by Coulomb cor-
rections "Arrington and Sick, 2004#. In order to extract
RL and RT in the presence of Coulomb distortion, the
data must first be corrected for these effects; this is dis-
cussed in Sec. XI.

Here we concentrate on the discussion of the longitu-

FIG. 30. Longitudinal "lower data set# and transverse re-
sponses of 12C "Finn et al., 1984#, plotted in terms of the scaling
function F"y#.
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FIG. 1. (Color online) Euclidean electromagnetic longitudinal
(top panel) and transverse (lower panel) response function of
12C at q = 570 MeV. Experimental data are from Ref. [22].

that used in Ref. [3] for the sum rules. As discussed
in Ref. [3], the scaling assumption can be justified by ob-
serving that the high ! (well beyond !

qe

) region of the
response is dominated by two-nucleon physics, in partic-
ular by deuteron-like np pairs in the ground-state of the
nucleus. It is important to stress that, as ⌧ increases,
the Euclidean response functions become more and more
sensitive to strength in the quasi-elastic and threshold
regions of RL,T (q,!). Indeed, in this limit (⌧ >⇠ 1/!

qe

)
contributions from unmeasured strength at ! > !

max

are
exponentially suppressed.

In Fig. 1 we show results obtained by including only
one-body (open circles) or both one- and two-body (solid
circles) terms in the electromagnetic transition operators.
In the longitudinal case, destructive interference between
the matrix elements of the one- and two-body charge op-
erators reduces, albeit slightly, the one-body response.
In the transverse case, on the other hand, two-body cur-
rent contributions substantially increase the one-body re-
sponse. This enhancement is e↵ective over the whole
imaginary-time region we have considered, with the im-
plication that excess transverse strength is generated by
two-body currents not only at ! >⇠ !

qe

, but also in the
quasi-elastic and threshold regions of RT (q,!). It is re-
assuring to see that the full predictions for both longitu-

dinal and transverse Euclidean response functions are in
excellent agreement with data.
At larger values of ⌧ the statistical errors associated

with the GFMC evolution are rather large, particularly
in the longitudinal response for which the elastic contri-
bution proportional to the square of the 12C form fac-
tor [3] needs to be removed in order to account for the
inelastic strength only. However, it should be possible
to reduce these errors in the future by investing substan-
tial additional computational resources in this type of
calculation. Those presented here were performed with
⇠45 million core hours of Argonne National Laboratory’s
IBM Blue Gene/Q (Mira) parallel supercomputer. The
Automatic Dynamic Load Balancing (ADLB) library [23]
was used to distribute the imaginary time propagation of
O�(q)| V i and the evaluation of the matrix element in
Eq. (3) over more than 8000 MPI ranks. The code is at
present approximately 75% e�cient at this scale.
In Fig. 2 we show the largest of the five Euclidean

neutral-weak response functions: the transverse (top
panel) and interference (lower panel) E↵�(q, ⌧), having
respectively ↵� = xx and ↵� = xy in the notation of
Ref. [1]. The Exy(q, ⌧) response is due to interference
between the vector (VNC) and axial (ANC) parts of the
neutral current (NC), and in the inclusive cross section
the corresponding Rxy(q,!) enters with opposite sign de-
pending on whether the process A(⌫l, ⌫0l) or A(⌫l, ⌫

0
l ) is

considered [1]. On the other hand, in the transverse
case the interference of VNC and ANC terms vanishes,
and Exx(q, ⌧) is simply given by the sum of the terms
with both O↵ and O� in Eq. (1) being from the VNC
or from the ANC. For Exx(q, ⌧) these individual contri-
butions, along with their sum, are displayed separately.
Both Exx(q, ⌧) and Exy(q, ⌧) response functions obtained
with one-body terms only in the NC are substantially in-
creased when two-body terms are also retained. This
enhancement is found not only at low ⌧ , thus corrobo-
rating the sum-rule predictions of Ref. [4], but in fact
extends over the whole ⌧ region studied here. Moreover,
in the case of the transverse response it a↵ects, in rela-
tive terms, the individual (VNC-VNC) and (ANC-ANC)
contributions about equally.

The VNC consists of a linear combination of the isoscalar
and isovector components of the electromagnetic cur-
rent, weighted respectively by the factors �2 sin2 ✓W
and (1 � 2 sin2 ✓W ) with ✓W being the Weinberg an-
gle. The excess transverse strength induced by two-body
terms in the VNC is consistent with that found in the
transverse electromagnetic response, and is confirmed by
experiment as Fig. 1 demonstrates. The two-body en-
hancement in the (ANC-ANC) contribution of Exx(q, ⌧)
is substantial at these relatively large q’s. It decreases
significantly (for ⌧ >⇠ 0.01 MeV�1) as q is reduced [24],
consistently with what is found in calculations of low

12C Euclidean Response: electron scattering

Lovato, et al, arXiv:1501.01981

Longitudinal

Transverse:
enhancement from
2-nucleon current
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Back to Back Nucleons: Jlab experiments

E Piasetzky et al. 2006 Phys. Rev. Lett. 97 162504.  
M Sargsian et al. 2005 Phys. Rev. C 71 044615.  
R Schiavilla et al. 2007 Phys. Rev. Lett. 98 132501.  
R Subedi et al. 2008 Science 320 1475.

np pairs dominate over nn and pp
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FIG. 6 VMC proton momentum distributions in T = 0 light
nuclei.

tightly bound, and the fraction of nucleons at zero mo-
mentum decreases. As nucleons are added to the p-shell,
the distribution at low momenta becomes broader, and
develops a peak at finite k. The sharp change in slope
near k = 2 fm�1 to a broad shoulder is present in all these
nuclei and is attributable to the strong tensor correlation
induced by the pion-exchange part of the NN potential,
further increased by the two-pion-exchange part of the
3N potential. Above k = 4 fm�1, the bulk of the mo-
mentum density appears to come from short-range spin-
isospin correlations.

Two-nucleon momentum distributions, i.e., the proba-
bility of finding two nucleons in a nucleus with relative
momentum q = (k1�k2)/2 and total center-of-mass mo-
mentumQ = k1+k2, provide insight into the short-range
correlations induced by a given Hamiltonian. They can
be formulated analogously to Eqs. (66,68), and projected
with total pair spin-isospin ST , or as pp, np, and nn
pairs. Again, a large collection of VMC results has been
published (Wiringa et al., 2014) and figures and tables
are available on-line (Wiringa, 2014b).

Experiments to search for evidence of short-range cor-
relations have been a recent focus of activity at Je↵er-
son Laboratory. In an (e, e0pN) experiment on 12C at
JLab, a very large ratio ⇠ 20 of pn to pp pairs was
observed at momenta q=1.5–2.5 fm�1 for back-to-back
(Q = 0) pairs (Subedi et al., 2008). VMC calculations
for ⇢pN (q,Q = 0) are shown in Fig. 7 as blue diamonds
for pn pairs and red circles for pp pairs for T = 0 nuclei
from 4He to 12C (Schiavilla et al., 2007; Wiringa et al.,
2014). The pp back-to-back pairs are primarily in 1S0

states and have a node near 2 fm�1, while the pn pairs
are in deuteron-like 3S1 �3 D1 states where the D-wave
fills in the S-wave node. Consequently, there is a large
ratio of pn to pp pairs in this region. This behavior is
predicted to be universal across a wide range of nuclei.
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FIG. 7 VMC pn (blue diamonds) and pp (red circles) back-
to-back (Q = 0) i pair momentum distributions for T = 0
nuclei.
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FIG. 8 VMC proton-proton momentum distributions in 4He
averaged over the directions of q and Q as a function of q for
several fixed values of Q from 0 to 1.25 fm�1.

As Q increases, the S-wave node in pp pairs will gradu-
ally fill in, as illustrated for 4He in Fig. 8, where ⇢pp(q,Q)
is shown as a function of q for several fixed values of Q,
averaged over all directions of q and Q. In contrast,
the deuteron-like distribution in pn pairs is maintained
as Q increases, as shown in Fig. 9, with only a gradual
decrease in magnitude because there are fewer pairs at
high total Q. Recently, these momentum distributions
for 4He have been tested in new JLab experiments and
found to predict the ratio of pp to pn pairs at higher
missing momentum very well (Korover et al., 2014).

2-nucleon momentum 
distributions

np vs. pp
Carlson, et al, arXiv:1412.3081

Argoneut
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Neutrinos and Nuclei

Solar Neutrinos
Beta Decay 
Reactor Neutrinos
Atmospheric Neutrinos
Accelerator Neutrinos
Astrophysical Neutrinos (Supernovae, …) 
Double-Beta Decay

All to some degree require knowledge of neutrino 
interactions with nuclei (different kinematics) 
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FIG. 1. Comparison of the experimental matrix ele-
ments R(GT ) with the theoretical calculations based on
the “free-nucleon” Gamow-Teller operator. Each transi-
tion is indicated by a point in the x-y plane, with the
theoretical value given by the x coordinate of the point
and the experimental value by the y coordinate.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

T(GT) Th.

T(
G

T)
 E

xp
.

0.77
0.744

FIG. 2. Comparison of the experimental values of
the sums T (GT ) with the correspondig theoretical value
based on the “free-nucleon” Gamow-Teller operator.
Each sum is indicated by a point in the x-y plane, with the
theoretical value given by the x coordinate of the point
and the experimental value by the y coordinate.

TABLE I. Experimental and theoretical M(GT ) matrix elements. The experimental data have been taken from [19]. Iβ + Iϵ

are the branching ratios . All other quantities explained in the text.

Process 2Jπ
n , 2T π

n Q Iβ + Iϵ log ft M(GT ) W
(MeV) (%) Exp. Th.

41Sc(β+)41Ca 7−, 1 6.496 99.963(3) 3.461(7) 2.999 4.083 6.172
42Sc∗(β+)42Ca 12+, 2 3.851 100 4.17(2) 2.497 3.389 11.127
42Ti(β+)42Sc 2+, 0 6.392 55(14) 3.17(12) 2.038 2.736 3.086
43Sc(β+)43Ca 7−, 3 2.221 77.5(7) 5.03(2) 0.677 0.764 6.172

5−, 3 1.848 22.5(7) 4.97(3) 0.726 0.878
44Sc(β+)44Ca 4+

1 , 4 2.497 98.95(4) 5.30(2) 0.392 0.741 6.901
4+
2 , 4 0.998 1.04(4) 5.15(3) 0.466 0.205

4+
3 , 4 0.353 0.010(2) 6.27(8) 0.128 0.295

44Sc∗(β+)44Ca 12+, 4 0.640 1.20(7) 5.88(3) 0.324 0.276 11.127
45Ca(β−)45Sc 7−, 3 0.258 99.9981 5.983(1) 0.226 0.079 13.802
45Ti(β+)45Sc 7−, 3 2.066 99.685(17) 4.591(2) 1.123 1.551 6.172

5−, 3 1.342 0.154(12) 6.24(4) 0.168 0.280
7−, 3 0.654 0.090(10) 5.81(5) 0.276 0.397
9−, 3 0.400 0.054(5) 5.60(4) 0.351 0.712

45V(β+)45Ti 7−, 1 7.133 95.7(15) 3.64(2) 1.801 2.208 6.172
5−, 1 7.093 4.3(15) 5.0(2) 0.701 0.428

46Sc(β−)46Ti 8+, 2 0.357 99.9964(7) 6.200(3) 0.187 0.277 13.093
47Ca(β−)47Sc 7−, 5 1.992 19(10) 8.5(3) 0.012 0.262 16.331

5−, 5 0.695 81(10) 6.04(6) 0.212 0.235
47Sc(β−)47Ti 5−, 3 0.600 31.6(6) 6.10(1) 0.198 0.235 13.802

7−, 3 0.441 68.4(6) 5.28(1) 0.508 0.611

3

Shell Model Calculations 
of Beta Decay typically 
require a quenching 
(reduction) of gA by ~ 0.75

Martinez-Pinedo 
and Poves, PRC 1996

Axial Currents at Low Momentum Transfer :  Beta Decay

Simple 1-Body
current

s

1+2 
current

s

Exp⨀

A=3 2.45 2.27 2.28* 2.28

A=6 2.4 2.15 2.19 2.2

A=7 2.58 2.29 2.39 2.4

A=10 2.45 2.06 2.34

Smaller (~ 10%)
quenching reproduced 

in light nuclei

(preliminary)



Intermediate q, E :  Supernovae and Astrophysical Neutrinos
Different Sources, time dependence, different epochs

Kepler Supernova

LA-UR-12-10419

Neutrino scattering and flavor transformation in supernovae

John F. Cherry13, J. Carlson23, Alexander Friedland23, George M. Fuller13, and Alexey Vlasenko13
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2
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We argue that the small fraction of neutrinos that undergo direction-changing scattering outside of
the neutrinosphere could have significant influence on neutrino flavor transformation in core-collapse
supernova environments. We show that the standard treatment for collective neutrino flavor trans-
formation is adequate at late times, but could be inadequate in the crucial shock revival/explosion
epoch of core-collapse supernovae, where the potentials that govern neutrino flavor evolution are
a↵ected by the scattered neutrinos. Taking account of this e↵ect, and the way it couples to entropy
and composition, will require a new paradigm in supernova modeling.

PACS numbers: 05.60.Gg,13.15.+g,14.60.Pq,26.30Hj,26.30Jk,26.50+x,97.60.Bw

In this letter we point out a surprising feature of neu-
trino flavor transformation in core-collapse supernovae.
These supernovae have massive star progenitors which
form cores which collapse to nuclear density and pro-
duce proto-neutron stars. The gravitational binding en-
ergy released, eventually some ⇠ 10% of the rest mass
of the neutron star, is emitted as neutrinos of all fla-
vors in a time window of a few seconds. Diverting a
small fraction of this neutrino energy into heating can
drive revival of the stalled core bounce shock [1–7] creat-
ing a supernova explosion and setting the conditions for
the synthesis of heavy elements [4, 6–9]. However, the
way neutrinos interact in this environment depends on
their flavors, necessitating calculations of neutrino flavor
transformation. These calculations show that neutrino
flavor transformation has a rich phenomenology, includ-
ing collective oscillations [10–38], which can a↵ect im-
portant aspects of supernova physics [15, 16, 19–23, 27–
29, 31, 32, 39–43]. For example, neutrino-heated heavy
element r-process nucleosynthesis [44–48] and potentially
supernova energy transport above the core and the ex-
plosion itself [11, 37, 49] could be a↵ected.

All collective neutrino flavor transformation calcula-
tions employ the “Neutrino Bulb” model, where neutrino
emission is sourced from a “neutrinosphere”, taken to be
a hard spherical shell from which neutrinos freely stream.
This seems like a reasonable approximation because well
above the neutrinosphere scattered neutrinos comprise
only a relatively small fraction of the overall neutrino
number density. However, this optically thin “halo” of
scattered neutrinos nonetheless may influence the way
flavor transformation proceeds. This result stems from a
combination of the geometry of supernova neutrino emis-
sion, as depicted in Fig. 1, and the neutrino intersection
angle dependence of neutrino-neutrino coupling.

Neutrinos are emitted in all directions from a neutri-
nosphere of radius R⌫ , but those that arrive at a loca-
tion at radius r, and su↵er only forward scattering, will
be confined to a narrow cone of directions (dashed lines
in Fig. 1) when r � R⌫ . In contrast, a neutrino which
su↵ers one or more direction-changing scattering events

R⌫

r
✓
ik
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ij

✓
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FIG. 1: Supernova neutrino emission geometry.

could arrive at the same location via a trajectory that
lies well outside this cone.
Following neutrino flavor evolution in the presence of

scattering, in general, requires a solution of the quan-
tum kinetic equations [50–52]. However, the rare na-
ture of the scattering that generates the halo suggests
a separation between the scattering-induced and coher-
ent aspects of neutrino flavor evolution. In the coherent
limit the neutrino-neutrino Hamiltonian, Ĥ⌫⌫ , couples
the flavor histories for neutrinos on intersecting trajec-
tories [33, 44, 50, 53]. As shown in Fig. 1, a neutrino
⌫
i

leaving the neutrinosphere will experience a potential
given by a sum over neutrinos and antineutrinos located
at the same point as neutrino ⌫

i

:

Ĥ⌫⌫ =
p
2G

F

X

a

(1� cos ✓
ia

)n⌫,a | ⌫,ai h ⌫,a|

�
p
2G

F

X

a

(1� cos ✓
ia

)n⌫̄,a | ⌫̄,ai h ⌫̄,a|, (1)

where the flavor state of neutrino ⌫
a

is represented by
| ⌫,ai, and ✓

ia

is the angle of intersection between ⌫
i

and neutrino or antineutrino ⌫
a

/⌫̄
a

. Here n⌫,a is the lo-
cal number density of neutrinos in state a, and the 1 �
cos ✓

ia

factor disfavors small intersection angles, thereby
suppressing the potential contribution of the forward-
scattered-only neutrinos [10, 11]. Direction-altered scat-

ar
X

iv
:1

20
3.

16
07

v1
  [

he
p-

ph
]  

7 
M

ar
 2

01
2

3

1010

109

108

107

106

105

g cm�3

R
ad

iu
s(

km
)

0

400

800

1200

1600

2000

0�

45�

90
�

13
5
�

180�

10

8

6

4

2

1
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FIG. 3: Left: Color scale indicates the density within the shock front in a 15 M� progenitor core-collapse supernova 500 ms
after core bounce, during the shock revival epoch [57]. Right: E↵ect of the scattered neutrino halo for the matter distribution
at Left. Color scale indicates the ratio of the sum of the maximum (no phase averaging) magnitudes of the constituents of the
neutrino-neutrino Hamiltonian, |Ĥbulb

⌫⌫ | + |Ĥhalo

⌫⌫ |, to the contribution from the neutrinosphere |Ĥbulb

⌫⌫ |.

(e.g., the red curve in Fig. 2), in general, exhibit an av-
erage density profile that is / r�(2 to 3), which means
that |Ĥhalo

⌫⌫ |/|Ĥbulb

⌫⌫ | is expected to increase with radius.
Note, however, that though the relative contribution of
the halo may grow with radius, at su�ciently large dis-
tance from the proto-neutron star the neutrino-neutrino
potential ceases to be physically important.

Matter inhomogeneity, an essential feature of super-
nova explosion models [4–7, 57, 62, 63], adds complexity
to this issue. To study this e↵ect we use the 2D mat-
ter density distribution, Fig. 3, taken from a supernova
model derived from a 15M� progenitor [57]. This snap-
shot corresponds to 500ms after core bounce, during the
shock revival epoch, after the onset of the SASI [4, 5].
We mock up a full 3D density profile by cloning the 2D
profile into a 3D data cube. Starting with an initial flux
of neutrinos from the neutrinosphere [64], and taking all
baryons to be free nucleons, we use the full energy de-
pendent neutral current neutrino-nucleon scattering cross
sections [65] to calculate the number flux of neutrinos
scattered out of each spatial zone and into every other
spatial zone (retaining the necessary information about
relative neutrino trajectories between zones). We com-
pute the magnitude of |Ĥhalo

⌫⌫ | at each location in the 2D
slice that comprises the original density distribution.

In this example calculation the scattered halo is taken
to be composed of neutrinos which have su↵ered only a
single direction-changing scattering. Because the halo re-

gion is optically thin for neutrinos, multiple scatterings
become increasingly rare with radius and do not have a
geometric advantage in their contribution to |Ĥhalo

⌫⌫ | rel-
ative to singly-scattered neutrinos. Neutrinos which ex-
perience direction-changing scattering that takes them
into the same cone of directions as neutrinos forward
scattering from the neutrinosphere are counted as con-
tributing to the halo (these neutrinos contribute ⇠ 10�6

of the halo potential). As before, we neglect the e↵ects
of neutrino flavor oscillations. Fig. 3 shows the results
of this calculation out to a radius of r = 2000 km. Dis-
turbingly, neutrinos from the scattered halo in this 2D
model nowhere contribute a maximum magnitude less
than 14% of the neutrino-neutrino potential magnitude,
and in many places contribute 90% or more of the total.
Fig. 3 shows that matter inhomogeneities generate large
corresponding scattered halo inhomogeneities.

The inhomogeneity of the scattered halo is increased
by several scattering processes which have been omitted
from this illustrative calculation. We did not include
neutrino-electron scattering. This scattering process has
smaller cross sections and relatively forward peaked an-
gular distributions and therefore produces a subdominant
contribution to |Ĥhalo

⌫⌫ |. What is more important is that
our calculation leaves out what is likely the dominant
source of neutrino direction-changing scattering in the
low entropy regions of the supernova envelope: coherent
neutrino-nucleus neutral current scattering.

Coherent Oscillations, MSW in turbulent regime, …
Can we make r-process nuclei in supernovae ?



Intermediate q: Neutrino Scattering from 12C (LSND)
and Astrophysical Neutrinos Theory

Muon neutrino 
DIF

Electron neutrino 
DAR Muon Capture Photo-

absorption
Shell 

Model
13.8 12.5 42.2 23.6

Exp 12.4(2) 14.4(4) 39.0(1) 21(2)

Astrophysical Neutrinos on 4He Theory 
w/ 2 nucleon currents

Gazit and Barnea, PRL 2007

Hayes and Towner, PRC, 1999

Little evidence for
quenching (or enhancement)
for 30-100 MeV neutrinos
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Matrix Element for light Majorana neutrino exchange)
M0⌫ = g2A MGT

0⌫ � g2V M
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⌧+i ⌧+j |ii

Majorana



Double Beta Decay Matrix Element
(light Majorana neutrino exchange)
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FIG. 3. (Color online) Normalized momentum transfer distribu-
tion CGT (p) for the Gamow-Teller part of M ′0ν in 136Xe. The dashed
line is the unquenched (one-body current) distribution and the filled
area represents the range of the distributions produced by the variants
of the calculation that include two-body currents. For these latter, the
average momentum ⟨p⟩ is about 230 MeV and

√
⟨p2⟩ ∼ 255 MeV,

vs about 190 MeV and 225 MeV in Ref. [7].

Another difference between the QRPA and the shell model
is that the QRPA works in a much larger single-particle
space (at the price of working with only a particular kind
of correlation). This larger space presumably means larger
contributions at high momentum transfer. Since the quenching
decreases with momentum transfer, the contributions of the
high-angular-momentum multipoles are less affected by the
two-body currents than their low-angular-momentum coun-
terparts. The large QRPA model space therefore makes the
quenching of 0νββ decay less than it would be in a shell
model calculation. To demonstrate that fact, we show in Fig. 3
the distribution in momentum transfer (normalized to 1) of
the Gamow-Teller part of the 0ν matrix element for 136Xe;
the inset in Fig. 2 of Ref. [7] shows the same distribution. The
shapes of our curve and that in Ref. [7] are visibly different and,
indeed, the averages ⟨p⟩ and

√
⟨p2⟩ are 15 or 20 percent larger

in QRPA than in the shell model, both for the unquenched and
quenched variants.

IV. DISCUSSION

It is clear, in today’s terminology, that some of the
quenching of spin operators in nuclei is due to the use of
restricted model spaces and some to many-body currents.
Model-space truncation can exclude strength that may be
pushed to high energies, and the omission of two-body currents
leaves delta-hole excitations, among other things, unaccounted
for. The question of which effect is more important is still
open. If two-body currents are behind most of the quenching,
as recent fits of the c parameters seem to suggest, then the
spin operators in 2νββ decay (and ordinary beta decay as
well) are very likely more quenched than those in 0νββ
decay, and existing calculations of 0νββ decay that do not
include quenching are at least roughly correct. We have
seen that the quenching of 0νββ decay is mild in the
QRPA, even a bit milder than in the shell model, and in
sharp contrast to the severe quenching discussed, e.g., in
Ref. [17].

It is of course possible that, as older meson-exchange
models suggest [1], the effects of many-body currents are small
at all momentum transfer. In that event the quenching of 0νββ
decay would be unrelated to the two-body currents and could
be similar in magnitude to the quenching of 2νββ decay, a state
of affairs that would make 0νββ experiments less sensitive to
a Majorana neutrino mass than we currently believe. A strong
argument that this state of affairs is real, however, has yet to
be presented. It seems likely to us that the quenching of 0νββ
matrix elements is around the size indicated by the χEFT plus
QRPA analysis carried out here or the χEFT plus shell-model
analysis of Ref. [7].
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[10] F. Šimkovic, G. Pantis, J. D. Vergados, and A. Faessler, Phys.
Rev. C 60, 055502 (1999).
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Accelerator Neutrinos

SuperK
MicroBooNE

MINOS

MINERva
Advantages: Control over Energy, flux

neutrino ‘beams’ can be sent over long distances



Theorist’s Idealized Neutrino Experiment

Monochromatic neutrino (or anti-neutrino) beam
   with well-characterized flavor 
   detected at at least 2 distances w/ different flavors resolved
Need L - distance to detector
         E - energy of neutrinos
         number of neutrinos w/ different flavors
                      at different baselines L

Reality:  know L
            mostly know flavor dependence
            don’t know Energy so don’t know L/E

need to understand how neutrinos interact 
                        with nuclei to reconstruct neutrino energy

MiniBoone flux



Larger q: QuasiElastic Neutrino Scattering
requires enhancement!

MiniBooNE	

Theory	
consensus

Significant Enhancement required, 
calculations show
enhancement in 

Vector, Axial, and Interference Terms



Neutrinos Oscillations and Masses

Neutrinos interact with matter in the flavor basis
but propagate in the mass basis ( in vacuum )

Neutrino oscillations first proposed in 1957 by Bruno Pontecorvo,
Maki, Nakagawa, and Sakata in 1962

Mixing angles, CP violating phases, Majorana Phases
+ MSW effect from forward scattering in matter

MajoranaCP-violating phase



Neutrino Oscillations: Masses and Mixing

normal inverted

Simplified two-flavor neutrino oscillations:

Ratio of  E/L to Δm2 critical

masses, mixings from oscillations

Need to understand cross-section even with near and far detectors
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to collective excitations of electric-dipole type in the nu-
cleus. In the large q limit, the one-body sum rules di↵er
from unity because of relativistic corrections in OL(q),
primarily the Darwin-Foldy term which gives a contri-
bution �⌘/(1 + ⌘) to S1b

L (q), where ⌘ ' q2/(4m2), and
because of the convection term in OT (q), which gives a
contribution ' (4/3)CT Tp/m to S1b

T (q), where Tp is the
proton kinetic energy in the nucleus.

In contrast to SL, the transverse sum rule has large
two-body contributions. This is consistent with studies
of Euclidean transverse response functions in the few-
nucleon systems (Carlson et al., 2002), which suggest that
a significant portion of this excess transverse strength
is in the quasi-elastic region. Overall, the calculated
SL(q) and ST (q) are in reasonable agreement with data.
However, a direct calculation of the response functions
is clearly needed for a more meaningful comparison be-
tween theory and experiment. Such calculations will be
forthcoming in the near future.

While sum rules of NC or CC weak sum rules are of a
more theoretical interest, they nevertheless provide useful
insights into the nature of the strength seen in the quasi-
elastic region of the response and, in particular, into the
role of two-body terms in the electroweak current. Those
corresponding to weak NC response functions and rela-
tive to 12C are shown in Fig. 24: results S1b (S2b) cor-
responding to one-body (one- and two-body) terms in
the NC are indicated by the dashed (solid) lines. Note
that both S1b

↵� and S2b
↵� are normalized by the same fac-

tor C↵� , which makes S1b
↵�(q) ! 1 in the large q limit.

In the small q limit, S1b
00 (q) and S1b

0z (q) are much larger
than S1b

↵� for ↵� 6= 00, 0z. In a simple ↵-cluster pic-

ture of 12C, one would expect S1b
↵�(

12C)/C↵�(12C) '
3S1b

↵�(
4He)/C↵�(4He), as is indeed verified in the ac-

tual numerical calculations to within a few %, except for
S1b
00 /C00 and S1b

0z /C0z at low q . 1 fm �1, where these
quantities are dominated by the elastic contribution scal-
ing as A2.

Except for S2b
00 (q), the S2b

↵�(q) sum rules are consid-

erably larger than the S1b
↵�(q), by as much as 30-40%.

This enhancement is not seen in calculations of neutrino-
deuteron scattering (Shen et al., 2012); the deuteron
R↵�(q,!) response functions at q = 300 MeV/c are dis-
played in Fig. 25 (note that R00 is multiplied by a factor
of 5). Two-body current contributions in the deuteron
amount to only a few percent at the top of the quasielas-
tic peak of the largest in magnitude Rxx and Rxy, but
become increasingly more important in the tail of these
response functions, consistent with the notion that this
region is dominated by NN physics (Lovato et al., 2013).
The very weak binding of the deuteron dramatically
reduces the impact of NN currents, which are impor-
tant only when two nucleons are within 1–2 inverse pion
masses.

Correlations in np pairs in nuclei with mass number
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FIG. 24 (Color online) The sum rules S
↵�

in 12C, correspond-
ing to the AV18/IL7 Hamiltonian and obtained with one-body
only (dashed lines) and one- and two-body (solid lines) terms
in the NC.
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FIG. 25 (Color online) The response functions R
↵�

in the
deuteron at q = 300 MeV/c computed using AV18 and ob-
tained with one-body only (dashed lines) and one- and two-
body (solid lines) terms in the NC. The inset shows the tails
of R

↵�

in the !-region well beyond the quasi-elastic peak.

A�3 are stronger than in the deuteron. The NN density
distributions in deuteron-like (T=0 and S=1) pairs are
proportional to those in the deuteron for separations up
to ' 2 fm, and this proportionality constant, denoted as
RAd (Forest et al., 1996), is larger than A/2; in 4He and
16O the calculated values of RAd are 4.7 and 18.8, respec-
tively. Similarly, experiments at BNL (Piasetzky et al.,
2006) and JLab (Subedi et al., 2008) find that exclusive
measurements of back-to-back pairs in 12C at relative mo-
menta around 2 fm�1 are strongly dominated by np (ver-
sus nn or pp) pairs. In this range and in the back-to-back

Sum rules in 12C

Lovato, et. al PRL 2014

EM

Single Nucleon currents (open symbols) versus
Full currents (filled symbols)

A. Lovato (ANL)
S. Gandolfi (LANL)
S. Pieper (ANL)
R. Schiavilla (Jlab/ODU
G. Shen (LANL - UW)
J. Carlson
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FIG. 2. (Color online) Euclidean neutral-weak transverse
(top panel) and interference (lower panel) response functions
(↵� = xx and xy in the notation of Ref. [1]) of 12C at q = 570
MeV. See text for further explanations.

q charge-changing weak transitions to specific low-lying
states, such as the �-decays and electron and muon cap-
tures studied in Refs. [25, 26], where it amounts to a
few percent. In principle, the enhancement in the quasi-
elastic region could be measured in parity-violating in-
clusive (~e, e0) scattering at backward angles. However,
the smallness of the factor (1� 4 sin2 ✓W ), to which the
relevant (VEM-ANC) interference response function is
proportional, makes experiments of this type extremely
di�cult.

In order to obtain more detailed information on the
energy dependence of the R↵�(q,!) response, we em-
ploy the maximum entropy (MaxEnt) method to invert
E↵�(q, ⌧). We describe the method here very briefly, sev-
eral standard references are available [15, 16]. The nu-
merical inversion of a Laplace transform E↵�(q, ⌧) with
its associated statistical errors is a notoriously ill-posed
problem. The fact that we are interested in the (smooth)
response around the quasi-elastic peak rather than iso-
lated peaks makes it somewhat more practical. The
MaxEnt method is based on Bayesian statistical infer-
ence: the “most probable” response function is the one
that maximizes the posterior probability Pr[R|E ], i.e.,
the conditional probability of R given E. Bayes theo-
rem states that the posterior probability is proportional

to the product Pr[E|R ] ⇥ Pr[R ], where Pr[E|R ] is the
likelihood function and Pr[R ] is the prior probability. Ar-
guments based on the central limit theorem show that
the asymptotic limit of the likelihood function is given
by Pr[E|R ] / exp(��2/2) with �2 defined as follows.
Let N⌧ and N! be the numbers of grid points in the
variables ⌧ and !, respectively. Then the Laplace trans-
form in Eq. (2) reads (the q-dependence and subscripts
↵� of E↵�(q, ⌧) and R↵�(q, ⌧) are suppressed for simplic-
ity hereafter)

Ei =
N!X

j=1

Kij Rj , (4)

where Kij = exp(�⌧i !j) and Rj = �!j R(!j), and the
�2 follows from

�2 =
N⌧X

i,j=1

�
Ei � Ei

� �
C�1

�
ij

�
Ej � Ej

�
, (5)

where the Ei are obtained from Eq. (4), the Ei are the
GFMC calculated values, and C is the covariance matrix.
Therefore, maximizing the likelihood function reduces to
finding a set of Ri values that minimizes the �2. The
GFMC errors on Ei are strongly correlated in ⌧ , as in-
dividual steps involve only small spatial distances and
evolutions of the spin-isospin amplitudes. It is therefore
of paramount importance to estimate the covariance ma-
trix C.
Limiting ourselves only to the �2 minimization would

implicitly be making the assumption that the prior prob-
ability is either unimportant or unknown. However, since
the response function is positive definite and normal-
izable, it can be interpreted as yet another probability
function. The principle of maximum entropy states that
the values of a probability function are to be assigned by
maximizing the entropy

S =
N!X

i=1

h
R(!i)�M(!i)�R(!i) ln[R(!i)/M(!i)]

i
�!i ,

(6)
where the positive definite function M(!) is the default

model. It is worthwhile mentioning that the above ex-
pression is applicable even whenR(!) andM(!) have dif-
ferent normalizations. The entropy measures how much
the response function di↵ers from the model. It vanishes
when R(!) = M(!), and is negative when R(!) 6= M(!).
The maximum entropy method adds to the simple �2

minimization the use of the prior information that the
response function can be interpreted as a probability dis-
tribution function. We employ historic maximum en-

tropy by minimizing ↵S � �2/2 with the parameter ↵
adjusted to make the �2 equal to one. While more re-
fined methods relying on Bayes statistical inference have
been developed, we found historic maximum entropy to
be simple to implement and adequate for our purposes.
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critical for LBNF
neutrino vs. antineutrino:

CP violation
and mass hierarchy

Axial

Vector

Total

V-A interference

~30% enhancement from 2N currents in all 
channels except Longitudinal (charge)



Future Theory Efforts: Accelerator Neutrinos
Higher Energy, Larger Nuclei, more exclusive

Larger Nuclei:  AFDMC (sample spins/isospins)
                     Coupled Cluster
                     Factorization Approaches
                              (2-nucleon level)

Higher Energy:  in Factorization Approaches
                       Pion production, Delta, …

More Exclusive Channels:  couple to
                       Generators (semi-classical)
                        at multi-nucleon level



Future:  Astrophysical Neutrinos

`Nuclear physics and neutrinos’ questions:

Neutrino decoupling - initial flux at proto-neutron star
                                or in neutron star mergers

Neutrino evolution -  Coherent neutrino interactions 
                                in early universe, more realistic 

 treatment of compact objects

Nucleosynthesis in supernovae and neutron star mergers



Open Questions

CP-violation in neutrinos

Mass hierarchy, normal or inverted?

Absolute mass scale

Majorana or Dirac masses?

Hints of further Beyond the Standard Model Physics?

LBNF, HyperK, …

Neutrinoless
Double beta-decay

short-baseline &
reactor experiments



Summary

Many thanks to: 
FNAL 
DOE NP 
NUCLEI SciDAC-3 project (computingnuclei.org) DOE NP and ASCR 
ANL devoting ~100M core-hours to this project plus staff/postdoc time 
INCITE award to NUCLEI project 
LANL support through LDRD-DR and LDRD-ER Projects

 Exciting time in Neutrino Physics
 Many prospects for discovery:  
    mass hierarchy 
    CP violation,  
    Majorana neutrinos (lepton number violation),  
    absolute mass scale
 Nuclear Physics (and computation) 
     plays a key role in: astrophysics,  
     supernovae, neutron stars and mergers  
     and nuclear and particle physics experiments
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FIG. 2: (Color online) EM nucleon form factors obtained using different descriptions compared with

data. The proton electric form factor (top-left panel) corresponding to Gayou2002, Gayou2001,

Punjabi, Puckett, Zhan, Ron, Paolone and Crawford have been obtained from Rp data by divid-

ing by the GKex model values of Gp
M/µp. The same applies to Geis in the case of the electric

neutron form factor (left-bottom), but using the GKex model Gn
M/µn. The data are taken from

references [57–103].

restricted momentum transfer range. This is clearly illustrated in the bottom panels shown in

Fig. 2. In the case of the magnetic contribution to the neutron, the data scatter significantly

in the region below 1 (GeV/c)2. The five models presented track the average of the scattered

data in this region, fitting the higher-|Q2| behavior, except for the A-S prescription that falls

much faster. Finally, data for Gn
E/GD are presented in the left-bottom panel compared with

the five prescriptions considered. Here, data derived from different polarization techniques

as well as values obtained from analysis of the deuteron quadrupole form factor data [84] are
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data. The proton electric form factor (top-left panel) corresponding to Gayou2002, Gayou2001,

Punjabi, Puckett, Zhan, Ron, Paolone and Crawford have been obtained from Rp data by divid-

ing by the GKex model values of Gp
M/µp. The same applies to Geis in the case of the electric

neutron form factor (left-bottom), but using the GKex model Gn
M/µn. The data are taken from

references [57–103].

restricted momentum transfer range. This is clearly illustrated in the bottom panels shown in

Fig. 2. In the case of the magnetic contribution to the neutron, the data scatter significantly

in the region below 1 (GeV/c)2. The five models presented track the average of the scattered

data in this region, fitting the higher-|Q2| behavior, except for the A-S prescription that falls

much faster. Finally, data for Gn
E/GD are presented in the left-bottom panel compared with

the five prescriptions considered. Here, data derived from different polarization techniques

as well as values obtained from analysis of the deuteron quadrupole form factor data [84] are
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Fig. 3. (Color online) EM nucleon form factors from different experiments (see Fig. 2 for references) are compared with the GKex model and with the data
of Bernauer et al. [116] (see text for details).

standard dipole form, starts to grow rapidly for |Q 2
| � 2 (GeV/c)2 whereas the other models lead to decreasing Gp

E/GD. In
contrast, the other models are reasonably successful at representing the data above 1.8 (GeV/c)2 taken from polarization
measurements. Note, however, that the A–S parameterization was only designed to be used when |Q 2

|  1 (GeV/c)2.
In the case of Gp

M (right-top panel), data have been measured for a momentum transfer range that is significantly greater
than for the other form factors. As shown, the ratio Gp

M/(µpGD) is relatively close to unity until |Q 2
| ⇠ 1 (GeV/c)2. Then,

it increases and reaches its maximum in the region ⇠3–5 (GeV/c)2 before decreasing rapidly for |Q 2
| > 7 (GeV/c)2.

All prescriptions reproduce the general behavior of data out to very high values of |Q 2
|, with the exception of the A–S

prescription (again, only to be used when |Q 2
| < 1 (GeV/c)2). Also noteworthy is that the BHM-pQCD model clearly

overestimates data located at |Q 2
|-values where the maximum is reached.

As already mentioned in previous paragraphs, the extraction of the neutron form factors from electron–deuteron and
electron-3He scattering leads to greater uncertainties and a more restricted momentum transfer range. This is clearly
illustrated in the bottom panels shown in Fig. 2. In the case of the magnetic contribution to the neutron, the data scatter
significantly in the region below 1 (GeV/c)2. The fivemodels presented track the average of the scattered data in this region,
fitting the higher-|Q 2

| behavior, except for the A–S prescription that falls much faster. Finally, data for Gn
E/GD are presented

in the left-bottom panel compared with the five prescriptions considered. Here, data derived from different polarization
techniques as well as values obtained from analysis of the deuteron quadrupole form factor data [84] are plotted. From
comparison with theory we observe that all prescriptions provide reasonable descriptions of data up to ⇠1 (GeV/c)2. For
higher |Q 2

| the models start to deviate, even changing the slope of the curve for the BHM-SC case.
To complete the discussion of the EM form factors we present in Fig. 3 the analysis recently performed by Bernauer

et al. [116], where about 1400 elastic electron–proton cross sections were measured with four-momentum transfers up
to |Q 2

| ⇠ 1 (GeV/c)2. The dashed white lines in Fig. 3 represent the best fits to these data, whereas the blue shadowed
areas include the statistical and experimental systematic errors plus effects coming from Coulomb corrections (see [116] for
details). We compare these data with the results provided by the GKexmodel (red line). Tomake the discussion that follows
easier, we also include in the graph data coming from experiments based on Rosenbluth separations in the two upper panels
and data from polarization experiments in the bottom panel, both already shown in Fig. 2.

The proton electric form factor normalized to the dipole form is presented in the top panel. We notice that GKex slightly
overestimates the behavior of the data of Bernauer et al., but it reproduces older Price measurements [57]. It is important
to point out that for transfer momenta below 0.7 (GeV/c)2 the discrepancy between GKex and the data of Bernauer et al.
and Borkowski et al. [60] is on average less than ⇠2%. The results for the proton magnetic form factor are presented in the
middle panel. In this case, the GKexmodel fits nicely data coming from the older experiments, but it underestimates the new
analysis performed by Bernauer et al.; the difference is of the order of⇠4% at |Q 2

| = 0.7 (GeV/c)2. Finally, the bottom panel
in Fig. 3 shows the ratio Rp = µpG

p
E/G

p
M . We display the most recent data presented in the literature, Paolone et al., [71],

Zhan et al. [72] and Ron et al. [73]. As shown, they are in accord with the analysis of Bernauer et al. but differ from previous
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Fig. 4. (Color online) Electroweak form factors obtained with the different prescriptions analyzed in this work. Zero strangeness has been assumed here.

experiments, namely those of Punjabi et al. [67] and Crawford et al. [70]. At |Q 2
| = 0.7 (GeV/c)2 the difference is about

⇠6%–7%. In Section 4.1 the consequences of using the results of Bernauer et al. for the EM form factors, rather than the GKex
model fit to the older data, in obtaining the PV asymmetry are examined.

Summarizing, discrepancies between data taken in different experiments and the results provided by the GKex model
are below ⇠6%–7% in the range |Q 2

|  0.7–0.8 (GeV/c)2.
For completeness, we present in Fig. 4 the results corresponding to the electroweak vector nucleon form factors,eGE,M ,

for the different EM descriptions considered. In all cases strangeness content in the nucleon has not been included, but the
radiative corrections R(a)

V entering in the electroweak vector coupling constants (Eqs. (49)–(51)) have been incorporated
assuming the general expressions

RT=0
V =

Rn
V � (1 � 4 sin2 ✓W )Rp

V

4 sin2 ✓W
, (63)

RT=1
V =

(1 � 4 sin2 ✓W )Rp
V + Rn

V

2(1 � 2 sin2 ✓W )
(64)

with Rp
V = �0.0520, Rn

V = �0.0123 and R(0)
V = �0.0123 [117,118], this last term not contributing to results in Fig. 4

because it only enters with strangeness G(s)
E,M different from zero.

In the present study we follow closely the arguments already presented in [117] where a global analysis of experimental
data from elastic PV electron scattering at low-Q 2 was given. Contributions from perturbative QCD and coherent strong
interaction effects in the radiative corrections associated with elastic nucleon scattering have been evaluated in [119,120],
providing also an improved estimate of the running of theweakmixing angle in theMS renormalization scheme. All of these
effects are included in the RV -values shown above (see Table 1 in [117]). As explained in [117], the theoretical uncertainties
in Rn

V and R(0)
V are less than 1%, and hence have a negligible impact on the analysis presented in this work. On the other

hand, the theoretical error in the full expression (1 � 4 sin2 ✓W )(1 + Rp
V ) is slightly more than 1% (see [120]). In this work

we use the conventional MS renormalization scheme, and the weak mixing angle, sin2 ✓W , used in the evaluation of the PV
asymmetry results that are discussed in the next section, which takes on the value 0.23122 ± 0.00015 in accordance with
the arguments presented in [117,121]. The use of a different ✓W -value, for instance the running sin2 ✓W (0) given in [120],
leads to differences in the PV analysis that will be considered briefly in the next section.

As shown, results foreGp,n
E,M provided by the five prescriptions are very similar for |Q 2

|  1 (GeV/c)2. This is consistent
with the general behavior presented in Fig. 2. On the contrary, the spread gets wider as |Q 2

| increases. In general, comments
already applied to the analysis of the purely EM form factors can be also extended here, but changing the isospin channel.


