Electron Neutrino Charged-Current Inclusive Cross Section Measurement in NOvA

Xuebing Bu
Fermilab

for the NOvA Collaboration
Elusive neutrinos

- Puzzles for neutrinos
 - Small mass
 - Mass ordering
 - Relationship between neutrino and anti-neutrino: are they the same particle?
 - CP violation
 - Number of flavors

Standard Model of elementary particles
Oscillation experiments can give detailed information on the difference between mass values.

Solving this mass ordering puzzle is a major goal for NOvA.
To solve the puzzles of mass ordering and CP violation, long baseline neutrino experiments usually use muon neutrino beam to study electron neutrino appearance with two detectors.

The near detector is used to understand the beam composition and predict the backgrounds in the far detector.
Long-baseline neutrino oscillation experiments

- CP violation sensitivity is achieved by comparing the ν_e and anti-ν_e appearance rate in a far detector.
 - Flux produced through oscillations, and not present in the initial flux at a near detector.
 - Knowing ν_e cross section is necessary to determine CP violation with high precision in future oscillation experiments.
- Intrinsic beam ν_e is a irreducible background for ν_e appearance analysis, and the flux is not fully cancelled between near detector and far detector.
- A direct measurement of ν_e cross section is important.
Electron neutrino cross section measurements

There are very few electron neutrino cross section measurements at GeV scale.

T2K

MINERvA

arXiv: 1509.05729

E: 1-10 GeV
There are very few electron neutrino cross section measurements at GeV scale. Knowing the cross section in few GeV energy region is important for long-baseline experiments, like DUNE.
NOvA Experiment

- Long-baseline experiment with two functionally identical detectors

- Physics goals
 - Appearance $\nu_\mu \rightarrow \nu_e, \bar{\nu}_\mu \rightarrow \bar{\nu}_e$
 - Disappearance $\nu_\mu \rightarrow \nu_\mu, \bar{\nu}_\mu \rightarrow \bar{\nu}_\mu$
 - Sterile neutrino
 - Near Detector cross section
 - Exotics phenomena
NuMI Beam

- Detectors are off beam axis
 - Narrow band beam peaked at 2 GeV.
NuMI Beam

- Detectors are off beam axis
 - Narrow band beam peaked at 2 GeV.
 - Electron neutrino flux is ~1% of total with broad energy spectrum.
- Detectors are off beam axis
 - Narrow band beam peaked at 2 GeV.
 - Electron neutrino flux is \(\sim 1\% \) of total with broad energy spectrum.
 - Electron neutrino are mainly from decay of muons and kaons.

\[
\begin{align*}
\pi^+ &\rightarrow \mu^+ \rightarrow \nu_e + e^+ + \bar{\nu}_\mu \\
K^+ &\rightarrow \nu_e + e^+ + \pi^0 \\
K_L^0 &\rightarrow \nu_e + e^+ + \pi^-
\end{align*}
\]
NuMI Beam status

Data collected from an exposure of 2.6E20 protons-on-target are used in this analysis. There are major updates last summer towards to 700 kW operation. Current beam power stays around 500 kW with a peak at 570 kW!
Near Detector

located at Fermilab

~ 100m underground

neutrino beam

NOvA

MINERvA

MINOS
Detector Technology

- PVC cells, each cell contains one loop of wavelength-shifting fiber, and filled with scintillator oil. Read out by avalanche photo-diode
- Planes are layered in orthogonal views
- Near Detector:
 - 193-ton fully active + 97-ton muon catcher
 - 20K channels
 - low Z and high-active tracking calorimeter
MC topologies

Simulated events with 2 GeV visible
Near Detector data event

All hits recorded in a 10 µs beam spill at ND.

Color indicates the timing of hits
Near Detector data event

All hits recorded in a 10 μs beam spill at ND.
Calibration

→ Attenuation correction for WLS fiber using cosmic data.

→ Stopping muons are used as standard candles to set absolute energy scale.
Calibration

- Multiple cross-checks for energy scale
 - Cosmic μ dE/dX
 - Horizontal μ from beam neutrino
 - π^0 invariant mass
 - Hadron energy per hit
- All results agree within 5%.
Simulation

- Beam flux: FLUKA v2011 + FLUGG v2009
- Neutrino interactions modeling: GENIE v2.8.0
- Detector simulation: GEANT 4.9.6
- Readout electronics and DAQ: custom simulation

Simulation: Locations of neutrino interactions that produce activity in the Near Detector
Reconstruction

Hits collected in 10µs NuMI beam window in data.

Raw Hits
Reconstruction

Slicing: group hits together in time and space for each neutrino interaction.
Reconstruction

Vertexing: find particle paths, and use the intersection of these paths to form vertex.
Reconstruction

Clustering: find electromagnetic showers using Fuzzy-clustering algorithm.
Analysis overview

→ We select ν_e CC inclusive events to measure the inclusive cross section per nucleon in the energy range 1 to 3 GeV.

$\sigma = \frac{N_{\text{data}} - N_{\text{bkg}}}{\phi \cdot T \cdot \epsilon_{\text{eff}}}$

- **# of selected data events**
 - Similar selection cuts as ν_e appearance analysis plus a customized shower based PID.

- **# of background events**
 - Normalization determined from 2 sideband samples.

- **Integrated flux**
 - Using external data from NA49 and MIPP to constrain the hadron production uncertainty.

- **Event selection efficiency**
 - Measured from GENIE MC events, using muon induced EM showers to validate the shower selection efficiencies in both data and MC.
Event selection

— Preselection

- Fiducial cuts
 - $|V_x / V_y| < 140 \text{cm}$
 - $100 < V_z < 700 \text{cm}$

- Select contained EM shower with
 - $150 < \text{shower length} < 500 \text{cm}$
 - shower energy $< 3.5 \text{GeV}$
 - Fraction of MIP hits < 0.35
 - EM likelihood ID (LID) > 0.2
Event selection — Shower based PID

- To reduce background further, we build a new PID completely based on shower properties.
- We use 7 input variables to train the Boosted Decision Tree (BDT):
 - Fraction of MIP hits in sub-leading prong
 - Fraction of energy in ±4cm transverse road
 - Maximal fraction of energy in 6-continuous planes
 - Fraction of energy in first 10 planes
 - Fraction of energy in 2nd, 3rd and 4th plane.
The shape distributions of BDT output for the ν_e CC signal and ν_μ CC and NC background after preselection.
The BDT output distributions for data, signal and various backgrounds.
All events are selected with preselection cuts.
Select EM showers from brem. muon

- Data-driven method to select EM showers to confirm the shower reconstruction and PID.
- We select EM showers from bremsstrahlung muons, which are produced from muon neutrino interactions in the rock upstream of the detector.
EM showers from brem. muon

NOvA ND Data
EM showers from brem. muon

NOvA ND Data

NOvA - FNAL E929
Run: 10499 / 0
Event: 30596 / --
UTC Sun Oct 26, 2014 00:55:15:104290216
Rock muon induced EM showers

Distributions for shower energy and length from Brem. EM data and MC, and ν_e signal MC.

There is decent agreement between Brem. EM data and MC. Brem. EM showers have similar shower properties as the ν_e signal events.
Rock muon induced EM showers

Excellent agreement between data and MC for the shower-based PID. MC is normalized to no. of data events. All events are selected with preselection cuts.
Selected ν_e candidates in data

Color indicates the charge of hits.
Selected ν_e candidates in data

Color indicates the charge of hits
Selected ν_e candidates in data

Color indicates the charge of hits
Event selection efficiency

- Defined as

\[
\text{Number of signal events passing all event selection cuts} \quad \div \quad \text{Number of signal events in true fiducial volume}
\]

- The GENIE MC events are used to measure the efficiency.

- Shower selection is studied using the Brem. EM showers, 5% uncertainty is assigned based on the data and MC comparison.

- There is 5% uncertainty for the sample compositions of QE, DIS, and RES.

- For detector modeling, comparing GEANT4 physics lists QGSP, QGSC, and FTFP, no visible effect.
Background normalization

- We select 2 sideband samples to study the background normalization
 - Dominated by ν_μ CC and NC
 - Add $p_e > 1.2$ GeV and $\cos\theta > 0.9$ to select the events in the similar kinematic region as the sample in signal region

- Events with BDT < -0.1
 - Passed all Preselection cuts

- Events with $F_{mip} > 0.45$
 - Passed all Preselection cuts except the fraction of MIP hits
Background normalization

Reconstructed energy distributions from sideband samples. Left plot for the main sideband sample with low BDT output, which has similar ratio for ν_μ CC over NC as in signal region. 0.95 ± 0.2 is used as the background normalization factor.
Background normalization

Invariant 4-momentum transfer squared distributions from sideband samples.

0.95±0.2 is used as the background normalization factor.

This 21% uncertainty will be propagated to be ~10% uncertainty on final cross section.
Unfolding

→ Experimental effects lead to event migration outside a given bin at generated level. The magnitude of the effect depends on the bin size relative to the energy resolution.

→ Given the good energy resolution (~5%), and large bin size (0.5GeV), we directly correct the reconstructed energy spectrum to match true.

→ Ensemble test with 200 statistically independent ν_e samples are used to estimate the systematic uncertainty to be 4%.
The dominant contribution to electron neutrino flux in 1 – 3 GeV region is from muons and kaons. Kaon dominates in the high energy region.

The fraction of neutrino flux from secondary mesons is ~55%.

- $P \rightarrow \pi (\rightarrow \mu)/K \rightarrow \nu_e$ (55%)
- $P \rightarrow X \rightarrow \pi (\rightarrow \mu)/K \rightarrow \nu_e$ (45%)
Electron neutrino flux

In 1–3 GeV energy region, our flux majorly locates within $p_T < 0.5$ GeV, $4 < p_z < 15$ ($0.03 < x_F < 0.125$)
Flux uncertainty

- Two major uncertainties
 - Beam transport (5%)
 - horn current, horn positions, beam direction, beam spot size, and magnetic field
 - Hadron production
 - Using external data (see below table)
 - Conservative systematic uncertainty is assigned for the region not covered by data.

<table>
<thead>
<tr>
<th>Data</th>
<th>(p_T) range (GeV)</th>
<th>(p_z) range (GeV)</th>
<th>Carbon Target</th>
<th>Proton energy (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA49 pion</td>
<td>0 - 2</td>
<td>0 - 60</td>
<td>thin</td>
<td>158</td>
</tr>
<tr>
<td>NA49 kaon</td>
<td>0 - 1</td>
<td>0 - 27</td>
<td>thin</td>
<td>158</td>
</tr>
<tr>
<td>MIPP kaon/pion ratio</td>
<td>0 - 2</td>
<td>27 - 60</td>
<td>thin</td>
<td>120</td>
</tr>
<tr>
<td>MIPP pion</td>
<td>0 - 2</td>
<td>0 - 60</td>
<td>thick</td>
<td>120</td>
</tr>
</tbody>
</table>

NA49 kaon cross section: G. Tinti Ph.D. Thesis
MIPP kaon/pion ratio: A. Lebedev Ph.D. Thesis
Hadron production uncertainty

- We use the external data results from NA49 and MIPP experiments to constrain the hadron production uncertainty. The uncertainty of using the low energy NuMI beam target (MIPP) pion yield on the medium energy target (NOvA) has been taken into account.

- We reduce the electron neutrino flux by 5 – 10% in 1 – 3 GeV energy region, the corresponding uncertainty is about 10%.
Hadron Energy

- There is 14% uncertainty for hadronic energy scale measured from muon neutrino samples.

- We shift the hadronic energy up and down 14% event-by-event to quantify the effect. There is 2–10% change on the total energy.

- We also cross-checked with selected nue events in sideband samples. It confirms the 14% uncertainty is large enough to cover existed difference between data and MC.
Uncertainties

<table>
<thead>
<tr>
<th>Uncertainty (%)</th>
<th>1 – 1.5 GeV</th>
<th>1.5 – 2 GeV</th>
<th>2 – 2.5 GeV</th>
<th>2.5 – 3 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Background subtraction</td>
<td>11</td>
<td>8</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Hadron energy</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Event selection</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Others</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total systematic</td>
<td>20</td>
<td>18</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Statistical</td>
<td>22</td>
<td>11</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>
Results

Electron neutrino charged-current inclusive cross section as a function of electron neutrino energy.

Electron neutrino charged-current inclusive cross section as a function of electron neutrino energy.
Results

Electron neutrino charged-current inclusive cross section as a function of electron neutrino energy.
From GENIE, the carbon-only prediction and the prediction for the actual composition of NOvA detector agree to within 2%.

Mass weight of detector component:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{12}</td>
<td>66.8%</td>
</tr>
<tr>
<td>Cl_{35}</td>
<td>16.4%</td>
</tr>
<tr>
<td>H_{1}</td>
<td>10.5%</td>
</tr>
<tr>
<td>Ti_{48}</td>
<td>3.3%</td>
</tr>
<tr>
<td>O_{16}</td>
<td>2.6%</td>
</tr>
<tr>
<td>Others</td>
<td>0.4%</td>
</tr>
</tbody>
</table>
Results

The measured per-nucleon cross section is >50% higher than GENIE prediction, but agree within 1.5σ.

![Graph showing electron neutrino cross section as a function of energy. Data points are compared to the GENIE 2.8.0 prediction. The measured cross section is higher than the prediction but agrees within 1.5σ.](image)
Other measurements

- Other measurements under way
 - NC coherent π^0 production
 - ν_μ CC inclusive cross section
 - ν-e scattering
 - ν_μ CC π^0
 - Many more...
Summary

- We measured the electron neutrino charged-current inclusive cross section in 1 – 3 GeV energy region using data with an exposure of 2.6E20 POT. The paper is under preparation for publication.

- The measured per-nucleon cross section is >50% higher than GENIE prediction, but agree within 1.5σ. The results show the indication of increasing the cross section.

- Other measurements, including the inclusive cross section for muon neutrino are under way.
Back-up
Neutrino mixing matrix and mass

\[
\begin{pmatrix}
 \nu_e \\
 \nu_\mu \\
 \nu_\tau
\end{pmatrix} =
\begin{pmatrix}
 1 & 0 & 0 \\
 0 & \cos \theta_{23} & \sin \theta_{23} \\
 0 & -\sin \theta_{23} & \cos \theta_{23}
\end{pmatrix}
\begin{pmatrix}
 \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\
 0 & 1 & 0 \\
 -\sin \theta_{13} e^{-i\delta} & 0 & \cos \theta_{13}
\end{pmatrix}
\begin{pmatrix}
 \cos \theta_{12} & \sin \theta_{12} & 0 \\
 -\sin \theta_{12} & \cos \theta_{12} & 0 \\
 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 \nu_1 \\
 \nu_2 \\
 \nu_3
\end{pmatrix}
\]

- Atmospheric and accelerator neutrino:

\[
\sin^2 \theta_{23} = 0.42^{+0.08}_{-0.03}, \quad \Delta m^2_{31} \approx \Delta m^2_{32} = 2.35^{+0.12}_{-0.09} \times 10^{-3} \text{ eV}^2
\]
Neutrino mixing matrix and mass

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos\theta_{23} & \sin\theta_{23} \\
0 & -\sin\theta_{23} & \cos\theta_{23}
\end{pmatrix} \begin{pmatrix}
\cos\theta_{13} & 0 & \sin\theta_{13} e^{-i\delta} \\
0 & 1 & 0 \\
-\sin\theta_{13} e^{-i\delta} & 0 & \cos\theta_{13}
\end{pmatrix} \begin{pmatrix}
\cos\theta_{12} & \sin\theta_{12} & 0 \\
-\sin\theta_{12} & \cos\theta_{12} & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

- Atmospheric and accelerator neutrino:
 \[
 \sin^2 \theta_{23} = 0.42^{+0.08}_{-0.03}, \quad \Delta m^2_{31} \approx \Delta m^2_{32} = 2.35^{+0.12}_{-0.09} \times 10^{-3} \quad eV^2
 \]

- Solar and reactor neutrino:
 \[
 \sin^2 \theta_{12} = 0.312^{+0.018}_{-0.015}, \quad \Delta m^2_{21} = 7.58^{+0.22}_{-0.26} \times 10^{-5} \quad eV^2
 \]
Neutrino mixing matrix and mass

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{pmatrix}
\begin{pmatrix}
\cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\
0 & 1 & 0 \\
-\sin \theta_{13} e^{-i\delta} & 0 & \cos \theta_{13}
\end{pmatrix}
\begin{pmatrix}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

- Atmospheric and accelerator neutrino:
 \[\sin^2 \theta_{23} = 0.42^{+0.08}_{-0.03}, \quad \Delta m_{31}^2 \approx \Delta m_{32}^2 = 2.35^{+0.12}_{-0.09} \times 10^{-3} \quad eV^2\]
- Solar and reactor neutrino:
 \[\sin^2 \theta_{12} = 0.312^{+0.018}_{-0.015}, \quad \Delta m_{21}^2 = 7.58^{+0.22}_{-0.26} \times 10^{-5} \quad eV^2\]
- Midterm:
 \[\sin^2 \theta_{13} = 0.092 \pm 0.0016 \text{ (stat.)} \pm 0.005 \text{ (syst.)} \quad \text{(DayaBay)}\]
 \[\sin^2 \theta_{13} = 0.140^{+0.038}_{-0.032} \quad \text{(0.170}^{+0.045}_{-0.037}) \quad \text{(T2K)}\]
The neutrino mixing parameter δ is unknown.

Neutrino oscillations are likely to play important role in future CP studies, as a dynamically-generated matter-antimatter asymmetry for the universe requires additional sources of CP violation beyond the observations in quark sector of Standard Model.
Off-axis beam

![Graphs showing off-axis beam simulation results.](image)
Shower angle

![Graph showing the fraction of events vs. cos(θ) for different samples: Brem EM Data, Brem EM MC, and νe MC. The graph is labeled with 2.6 \times 10^{20} \text{ POT} and states NOvA Preliminary.]
Background normalization

Electron momentum distributions from sideband samples.
0.95±0.2 is used as the background normalization factor.
This 21% uncertainty will be propagated to be ~10% uncertainty on final cross section.
Background normalization

Electron momentum distributions from sideband samples. 0.95±0.2 is used as the background normalization factor. This 21% uncertainty will be propagated to be ~10% uncertainty on final cross section.
Flux weight and uncertainty

NOvA Preliminary

Flux weight

Leo, MINERvA
Xnue

E_{ν_e} (GeV)
Migration matrix

[Diagrams of migration matrices showing energy distributions in NOvA Simulation]
Pe vs. $\cos\theta$
for numu CC and NC background

Fermilab JETP seminar, 02/26/16
Xuebing Bu (Fermilab)