Jet Calibration Experience in CDF

Beate Heinemann
University of Liverpool

-CDF calorimeter
-Relative Calibrations
-Absolute Calibration
-Multiple Interactions
-Summary



CDF calorimeter

@ Central and Wall(|n|<1.2): Wall Had

@ Scintillating tile with lead (iron) as absorber
material in EM (HAD) section

@ Coarse granularity:
¢ &: 24 towers cover 15 degrees in azimuth each
¢ n: 10 towers cover 0.1 unit in rapidity each

@ Non-compensating=» non-linear response to
hadrons

@ Rather thin: 4 interaction lengths
@ Resolutions:
¢ EM energies: 0/E=13.5% / JE
¢ HAD energies: 0/E=80% / JE
@ New Plug (1.2¢<|n|<3.6):

@ Similar technology to central

@ Differences
¢ 48 towers in azimuth

¢ EM energies: o0/E=16 %/ JE New Plug

¢ HAD energies: 0/E=80 % / JE |

& More linear response

& Thicker: 7 interaction lengths [ Central
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Overview

1. Calibrate EM and HAD calorimeters in situ
Reconstruct jets (JetClu cone algorithm):PTraw

3. Correct jets in plug calorimeter w.r.t. central "relative
corrections”: f.,

use di-jet data (versus n)
Correct for Multiple pp Interactions : UEM

Correct measured jets back to particle level jets: fune MC
simulation: f

Response of calorimeter to single particles
Fragmentation: Pt spectra in data

Correct for Underlying Event: UE
7.  Correct particle jet back to parton: OC

o A

o

Pr(AR) = (PJ*(AR) % f,q — UEM(AR)) x fus(AR) — UE(AR) + OC(AR)

Systematic error associated with each step
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In Situ Calorimeter Calibration I

@ Minimum Ionising Particle
(MIP):
@ J/¥ and W muons
@ peak in HAD calo: 22 GeV
@ Peak in EM calo: #300 MeV

@ Check time stability and runl
versus runé

@ Applicable where muon
coverage: n<1.4
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In Situ Calorimeter Calibration IT

@ /— ee peak:

@ Set absolute EM scale in

central and plug

@ Compare data and MC: mean

and resolution

@ Applied in Central and Plug

@ MinBias events:

@ Occupancy above some
threshold: e.g. 500 MeV

@ Time stability

@ Phi dependent calibrations:

resolution
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Dijet Balance

Relative Corrections
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Relative Corrections

@ Calibration Factor:

P+(probe)-Pt(trigger)/[0.5(P+(probe)+Pt(trigger)]

@ Probe jet:0.2<n<0.7
@ Mapping out cracks and response of new Plug
Ca I O r‘ i meTer. | PtProbe/PtTrigger vs Detector Eta |

1.25_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

@ Central at 1 by definition =

@ Colours: different Et ranges '
@ Use y-jet for systematics :

Plug Calorimeter

Crack between Central and Plug
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Detector to Particle Level

@ Do not use data since no high statistics calibration
processes at high Et>100 GeV

@ Extracted from MC = MC needs to

1. Simulate accurately the response of detector to single
particles (pions, protons, neutrons, etc.):

CALORIMETER SIMULATION

2. Describe particle spectra and densities at all jet Et:

FRAGMENTATION

@ Measure fragmentation and single particle response in data
and tune MC to describe it

@ Use MC to determine correction function to go from
observed fo "true”/most likely Et:

Etrue=f ( E°bs, n, conesize)
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Single Particle Response

@ Low Pt (1-10 GeV) in situ
CClllbI"C(TIOH: élA:um SRR A ‘
Vo[ Rl Gllodmeter Responise

@ Select "isolated” tracks and
measure energy in tower behind
them

@ Dedicated tfrigger TN & > i

@ Perform average BG subtraction Llis eP T LU L L

@ Tune GFlash to describe E/p IS
diSTribUTionS at e(]Ck p (Use Minimum Bias
n/p/K average mixture in MC) 1 T

@ High Pt (>8 GeV) uses fest T
P [GeVic]

beam:
@ Could try t-leptons

@ Non-linearity: response drops
by 30% between 10 and 1 GeV
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Fragmentation

@ Due to non-linearity of CDF . . - pythia
calorimeter big difference 2 | >_herwig
between e.g.

o 110 GeV pion

@ 10 1 GeV pions

@ Measure number of and Pt
spectra of particles in jets -
at different Et values as

function of track Pt: E.g. difference in
@ Requires understanding tfrack  fragmentation between
efficiency inside jets Herwig and Pythia may result
@ Idedlly done for each particle i1 different response
type (m, p. K)
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Absolute Correction from MC

@ Wanted:

Q N\clas‘r likely true Et value for given measured Et
value
@ BUT cannot be obtained universally for all
analyses since it depends on Et spectrum:

@ E.g. most likely value in falling spectrum dominated
by smearing from lower Et bins

@ Different for flat Et spectrum (e.g. top or new
resonance)

@ CDF:

@ Provide standard "generic” jet corrections using flat
Pt spectrum

@ Individual analyses determine their "specific”
residual corrections themselves from their MC
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Flat vs. QCD Spectra

@ For both spectra

@ There is an average P; shift of
hadron jets to calorimeter jets.

@ With a Flat spectrum.

@ After accounting for the average
shift there are roughly as many
low P+ as high P+ jefs "smearing"

into the calorimeter P+ bin. A

@ With a QCD spectrum

@ After accounting for the average
shift, there are significantly more
low Py jets than high P jets
;smearlng" into the calorimeter P

ins.

@ The QCD spectrum correction
is therefore significantly

lower.
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Absolute Corrections

@ Use MC with "flat" Et distribution
@ Separately for each cone size: 0.4, 0.7 and 1.0

@ Correction factor decreases with Et due to
non-linearity of calorimeter, e.g. cone 0.4
@50 GeV: =225%
@500 GeV: #15%

@ Systematic errors due to

@ Test beam precision

@ y-Jet and Z-jet balancing agreement between data
and simulation after correction=> see later
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Multiple pp Interactions

@ Extra pp interactions will increase the jet Et
values of primary hard interaction

@ subtract off average energy in cone per
interaction:

@ Number of interactions = Number of observed
vertices

@ Random cone in MinBias data:
E; versus Ny, e

GeV

8_

E.g. ~0.8 GeV per )
vertex for cone 0.7 \
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Systematic Errors I

@Procedural Errors:
@E.g. spline of rel. corrections
@E.g. 30% error on Multiple Interactions
@E.g. vary fragmentation within exp. Errors
@E.g. check Pythia vs Herwig
@E.g. test beam precision

@ Check that calibration processes are

okay within the quoted errors = next
slide
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Systematic Checks

o 'Y-J et: CDF PRELIMINARY

@ highest statistics © : ; T b ij N

@ systematically limited (kt-kick, BG contributions: <« A T
) ® Pt W

@ Not available for Et<25 GeV (trigger) ® -

Q@ Z-Jet:
@ Usable at all Et values ©

@ lower statistics than y-jet at high Pt ®
@ No kt-kick effect ©

* Excess over background

g Z_)bb : E Expected MC shape (PYTHIA)

v by e by by Lo Py by L Pa s
2 0 50 o B 0 0 0

@ Nice to have calibration peak © S s
@ Only for b-jets and difficult to trigger ©
@ Small signal on large background @

@ W-—jj in double b-tagged top events:

@ Expect 250 double-b-tagged top events in 2/fb =
1-2 % precision? ©

@ In LHC expect 45,000 double b-tagged ttbar per
month! ©

BUT none of them can test Jets with Et>200 GeV ®
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Some More Lessons...

@ Out-of-Cone correction: P

@ Jet shape in MC must describe data: \ e/
measure e.g. energy flow between cones f

of 0.4 and 0.7 —_—

@ Material in tfracking volume: e.g.
conversions will change corrections (CDF
sees this between run 1 and run 2 Silicon
detectors)

@ Test beam:

@ Cover low energies: can compare in situ
E/p to test beam

@ Map out longitudinal shower profile

@ Ability to rerun test beam on extra
module: in case something goes wrong...
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Summary

@ Calibration signals:
@ MIP peak, E/p, Z— ee and Min Bias for calorimeter calibration

@ Di-jet balancing for relative response in cracks and in plug
calorimeter

@ Isolated tracks for understanding calorimeter response to m,
p, K (fragmentation needs to be modeled)

@ Independent channels used for cross
checks/systematic error:
@ y-Jet and Z-jet balancing
@ Z— bb peak and W—jj peak in tt events

Excellent simulation required, particularly for high Et jets
where no physics channels available for calibration
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