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A Brief History of the Instrument

Violin Given its Final Form

Gasparo da Salo & Maggini (~1550)

The Amati Family - Cremona, Italy

Andrea (1535-1611) - Start of School
Heronymus & Antonio (1556-1630) - 2nd Generation
Nicola (1596-1684) - The Grand Amati’s

Best Known

Antonio Stradivarius (1644-1737) - 1200 violins!

_

Giuseppe Guarnerius (1687-1742) - Preferrred?
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Details of the Sound Box
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Mersenne’s Law (1636):

Overview of the Structure
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where f = Frequency; L = String Length; T = Tension; ¢ = Linear Mass Density

String c(mg/cm) f(Hz) T(dynes)
poownward Force: 20 1%%01 10.6x10°
Tension
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27.3x10°= 61.4 1bs
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Drive + Response

Different Notes Have Different Harmonic Content
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Acoustic Basics

Mechanical Oscillators have the same mathematics as RLC circuits )
Z = joL+R———
wC

Inductance L & Mass M
IMPEDANCE _ ,
Zn=—iwm+Rm+£&

Resistance R & Mechanical Resistance R |
Capacitance 1/C < Stiffness: K

Stiffness Resm"cance Mass
Dominated Dominated Dominated
' Violin:
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Regions of the Response Spectrum

Below 1000 Hz: Size of violin sets scale

Only modes in which the VOLUME
of the Violin changes contribute:

- QUASI-MONOPOLAR MODES -

- ) —

Names: A, B, B,,, etc.

Helmholtz Mode: A0 (265 -280 Hz)

Some Whale Radv Modes Below 1000 Hz
b 2 . K
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The A, Mode in Motion

Per Gren et al, Meas. Sci. Tech., 17 (2006) 635-644

Simple Radiation Pattern

Approx. uniform in all directions
Simple mono-polar radiator

The body is expanding and contracting
(pumping)
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Region Above 1000 Hz

1000 Hz = 2500 Hz

éop & ack Tend to
B D led
Freque%%(})rnxbogec%;) 3
Bridge Resonance

Modes Become
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Motion at 1415 Hz (Several Modes Contribute)
Per Gren et al, Meas. Sci. Tech., 17 (2006) 635-644

Complex Radiation Pattern
Presents different sound depending
on direction which is constantly changing

"... as if the sound was coming for
everywhere at once, dancing and
sparkling in the listeners ear..."

G. Wienwreich
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The Violin Maker’s Role
Making the Minimal Structure

Objective: Making the most efficient radiator
or
Making the lightest structure consistent with
the strength and resonance requirements

e Wood Selection

* Grain Orientation
- To Split or Not?
- Book matching

* Shaping
- Arching Pattern
— Thickness
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Circuits % Violins

CIRCUITS VIOLINS
R,L,and C M, R_,and K
INDEPENDENT COUPLED TOGETHER
one piece of WOOD

. Qs : 3
Example: Stiffness of a beam: K oc H }Natural Freq. f — [K « H
Mass of a beam: M oc H M

More Complications: Wood is NON-ISOTROPIC
Strength properties described by Tensor

Diag. Elements = Young’s Modulus | Off Diag. Elements = Shear Mod.
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Over-Arching Physics Principles

Scaling laws: Material Properties <> Frequency and Response Properties
(Originally due to John Schelleng, E.E.)

Overall Dimensions: H = Thickness & L = Length

Y = Young’'s Modulus (Elastic Modulus), p = Density, Mass M = pHL?

/ H
c, = Speed of Sound= % Stiffness (K) oc YH 372 Freq. f= Cs F

Example: Impedance Z (keeping f & L fixed)

z =5~ Lmw) ~ (pHL) £ ~ (D) 2L
V X Cs

Want Low Impedance # More Motion <~>More Sound
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Wood Properties
Selecting the Wood
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Grain Orientation

XYLEM (WOOD)

HEART WOOD
SAP WOOD

CAMBIUM

PHLOEM (BARK)

TOPS
Spruce

Uniform Growth
~1mm Annual Ring Spacing

Aging: Best if > 5 Years!

TWO HALVES OF

A VIOLIN TOP
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Grain Orientation

150 T3 axial cut (“Split”) @ =0" (reference =0%) : c=5326 m/s; 1 =0,67 x 10"-2 | /I':|
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axial eul (relerence) daviation lrem the axial (L)
direction by angle @

Angle of rotation with respect to the L-axis

Martin Schleske, “Speed of Sound and Damping...”, CAS Vol 1, No 6 (Series II), 1990

Investigation of speed of sound (C,) and damping (loss factor) as a function of cut angle: “run-out”

“Book Ending”
.

RN,
¥

\ \ \ !

Notice the “V” Pattern
Sets grain lines ~ parallel to local normals
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Shaping the Plates: Part I

Overall Shape (as seen for the outside): Arch or Arching Pattern
Thickness Pattern (Inside Arch): Graduations

“Arching is sculpting in sound!” Tom Croen, 1996

Cross Section of the Back of a Violin

CL
Recurve : l
Channel \
Thickness > T

Flat Arch: (Height 12-14 mm)- not strong - REQUIRES GOOD WOOD
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Characterizing the Arching

A =(A.-A)I (A, +A)
A, has a range from -1 to +1

When A, = 0 the curve is "balanced"
A, >0 the curve is "full”
A, <0 the curve is "swoopy"

A,

-

0.80

0.60 -
Results of a study on 0.40 |
25 Guarneri Violins. 0.20

0.00

Data extracted from -0.20

“Guiseppe Guarneri del Gesu” -0.40 -

Peter Biddulph, London, 1990 -0.60

Top/Back Averaged Area Asymmetries
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Time Works Wonders?

Top Lower Block Asymmetries

Violins start life ~
symmetrically

Over time the body distorts

Due to the unbalanced forces
generated by the bridge acting

on the sound post and bass bar.

This may contribute to
asymmetries in modes below

1000 Hz.
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Shaping the Plates: Part 11
(Graduations — Thicknessing)

Goals: To promote Resonance (Enhance Q)
Set Resonances in Assembled Instruments
at Particular Frequencies.

Tradition & Intuition:
Use resonance properties of components as
a guide -
Plate tuning:

Tap tones
Chaldini Patterns
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Eigenmode Plate Tuning

Where to remove wood:

Trdasien tceipt'
Hold Plate at .
éen51 ti *ty D
Tap Plate at
Desired Note ~ F-F# (350 - 370 Hz)
TafMode 2:

Desired Note ~ an octave lower

(150 - 180 Hz)

Sensitivity ~
of
f
om
Vi

Sensitivity ——

Chladini Patterns
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Same Modes Found in Top Plate

d[yol1] Ieq sseq

Plate ~ uniform thickness
Bass Bar Profile and Angle Controls Modes
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Free Plate to Assembled Instrument

b

Nodal Lines %:L’:J‘;‘f‘

wrapn around ‘

What matters are the

Estdigenmedasdndhs
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Correlation Studies
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More Mode Correlations
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Mode Adjustment in Assembled Instruments

Frequencies of Certain Modes can Example: B, & B
be moved in assembled instruments (poor sound radiators)
Nodal Line

Both Modes are Bending Modes

Motion ﬁ B |

Finger Board acts as a Adding Weight to end of
coupled Oscillator Finger Board Lowers
Frequencies
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Fixed Support

A Simple Model

I<Body

Two Modes

Masses move in Phase

=) =

(Lower Frequency)

Masses move with
opposite Phase

(Higher Frequency)

Effective Body m
Mass
KFB

Coupled Linear

Eff. FB
Mass

Oscillators

Eff. FB Mass (gr)

(Mass 1 Amp)? (dB)

180 200 220 240 260 280

Driving Freq. (Hz)
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How Well does the Model Fit?

Data
Masses: 0 gr - 8 gr
added to end of FB

Recorded B, & B,

Adjusting Parameter

Mg s =11 gr
v = 221 Hz

w_m(ml, m2+Mass)

‘requency (Hz)

[
X
X

o]
=}
i
-
a
=}

B1Freq

_I_
_I_

2

w_p(ml, m2+Mass) 240
2m Bo
220

0

-1 0 1 2

160
140 B,
120

5

4 6 8 10 12

Mass
Added Mass (gr)

3 4 5 6 7

Added Mass (gr)

Test: What are vz & M ;g Separate from the Violin?

Bench

“EB—

Added Mass

0) o _
om

14 16 18

8 9 10

4,

2m
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The Player’s Domain: Controlling the
Helmholtz String Motion

Main Components

Speed
Dictates String Amplitude

Pressure
Too little - no stick

Too much - no release

In between - changes
harmonic content

Contact Point

Close to Bridge - increased
harmonics

Close to Finger Board -
decrease harmonics

Pressugg

B dve —
j ALFS

ylsje mp

Stick Distance: vg,, ® Stick Time

f @ round trip time
g Time: (1-f i ﬁﬁrr]ne
ound trip time o = .d: 1/pitch)

fff

v

Speed
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Sound Comparisons
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Conclusions

* Many of the Traditional Methods of Making are
found to be well based on Physics Principles.

* The Violin is a complex, interlocking system
of coupled oscillators.

* Disentangling Material Properties,
Shaping, and Thicknessing is challenging.

* Beginning to understand how to
quantifiably control results.

* Both Maker and Player have
significant roles in the resulting sound.
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The Future

e Non-traditional materials

Balsa wood, Composites (carbon fiber, etc.)

e Electric Violins

* More complete understanding of
mode structure

e But... the renaissance in traditional
making is over. No longer
economically viable.
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