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Overview

• Introduction
• Open questions in flavor

physics
• Mixing of neutral mesons

& CP violation

• Precision studies of the
CKM matrix

• Hints of  “New Physics”?
• Conclusions
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IntroductionIntroduction

Concepts and openConcepts and open  questions inquestions in
high-energy physicshigh-energy physics
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The Standard Model
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Forces of Nature …
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Fundamental forces
• Gravity:

– classical description: general
relativity

– quantum gravity: string
theory, alternatives? 

• Electromagnetism:
– quantum electrodynamics

(QED), abelian gauge theory

• Strong interaction:
– quantum chromodynamics (QCD),

nonabelian gauge theory

• Weak interaction:
– quantum flavordynamics,

spontaneously broken nonabelian
gauge theory

– unification with electromagnetism
for energies above  100 GeV
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Grand unification?
• First step: 

electroweak unification 
(HERA data, DESY)
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• Indirect determination
of the Higgs mass:

End of particle physics?

Imminent Higgs discovery at Tevatron/LHC?
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Special role of weak interaction

• Complete understanding of weak force still a
challenge:
– breaking of electroweak symmetry?
– mass generation for weak gauge bosons (W±,Z0)?
– explanation of Yukawa couplings? 

(mass generation for fermions)
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Hierarchy problem

• Quantum fluctuations produce enormous masses
for all particles not protected by a symmetry

• Importance of gauge invariance:
– massless gauge bosons (γ,g,W,Z)
– massless chiral fermions (q,l)

• Spontaneous breaking of electroweak symmetry
generates “small” masses ~ <H> for W, Z and for
quarks and leptons

VEV
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Hierarchy problem

• Higgs mass itself not protected 
by a symmetry:

                mH « MGUT ~ 1016 GeV unnatural!

Higgs discovery = birth of the 
hierarchy problem

(not completion of Standard Model)
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Proposed solutions 
(“New Physics”)
•• SupersymmetrySupersymmetry::

– new symmetry at TeV scale protecting the Higgs mass
•• Extra dimensions:Extra dimensions:

– Elimination of the Planck scale
•• Technicolor:Technicolor:

– Higgs as a bound state of a new strong 
force operating at the TeV scale

•• ““Little HiggsLittle Higgs”” models: models:
– Higgs as a pseudo-Goldstone boson
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Search for “New Physics” …
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Complementarity

New particles

Colliders
(Tevatron, LHC, ILC?)

New flavor- and CP-

violating interactions

Factories
(BaBar, Belle, LHC-b,

Super-B factories,
Neutrino experiment, 
rare kaon experiments)

++

Universe
(astrophysics + cosmology)

Project X
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Flavor physics in the LHC era

• Flavor physics can be sensitive to “New
Physics” at scales of 1-1000 TeV, far
exceeding those accessible at LHC and ILC

• Many flavor- and CP-violating couplings can
only be probed at highest luminosity

• Indirect searches for “New Physics” will
profit from LHC discoveries!
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Open QuestionsOpen Questions  
in Flavor Physicsin Flavor Physics

Generation problem,Generation problem,
hierarchies, CP violationhierarchies, CP violation



17

Generation problem

• Gauge forces do not distinguish between
fermions of different generations
– e, µ have same charges
– quarks have same color

• Why 3 generations?
• New quantum number?
• Many parameters, hierarchies

(masses and mixing angles)
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Communication between generations

• Flavor-changing weak interactions:

• Complex entries: CP violation!

(uL,cL,tL)i

(dL,sL,bL)k

W

VVikik

Cabibbo-Kobayashi-Maskawa
matrix elements
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Strategies in flavor physics

• Two paths to discovery:
– precision measurements of CKM parameters
– studies of rare decays with small Standard Model

“background” (e.g., B→Xsγ, B→Xsl+l-, B→τν, Bs→µµ)
– various 2-3σ effects exist, which could be interpreted as

hints of  “New Physics” in B-B mixing or in rare decay
processes (FCNC)

–– among more compelling hints, with (g-2)among more compelling hints, with (g-2)µµ, for physics, for physics
beyond the beyond the Standard ModelStandard Model
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CKM mixing matrix

• Wolfenstein parameterization exhibits hierarchy
of matrix elements:
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Focus on smallest matrix elements:
Unitarity triangle
•• VVubub and VVtdtd contain CP-violating imaginary

parts (standard parameterization)

~V~Vtdtd

(0,0) (1,0)

(ρ,η)

γ β

α

~~VVubub
**

VudVub
*+VcdVcb

*+VtdVtb
*= 0
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Mixing of Neutral Mesons and
CP Violation
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Flavor oscillations

• Second-order weak-interaction processes
can transform long-lived neutral mesons into
their antiparticles (K0, Bd

0, Bs
0, D0):
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Flavor oscillations

• Analogy with quantum-mechanical system
of coupled pendula: state K0 at t=0 develops
into a superpositions of states K0 and K0

with time-dependent amplitudes

K0, K0

KL (KH)

KS (KL)
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Flavor oscillations

• B factories produce pairs of B0 and B0

mesons in coherent quantum states

• Decay of one meson (reconstruction of its
flavor) initiates time measurement for the
other meson
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CP violation

• Complex entries in CKM matrix can lead to
CP asymmetries

• Three types of  CP violation:
– in meson-antimeson mixing

(“indirect CP violation”)
– in weak decay  

(“direct CP violation”)
– in interference of mixing and decay 

(“time-dependent CP violation”)
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CP violation

• Measuring effects of a complex 
coupling requires:
– interference of at least two amplitudes with

different CP-violating phases:

– presence of another, CP-conserving (“strong”)
phase difference:

ϕweak → -ϕweak

δstrong → δstrong

CP

CP
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CP violation in decay

• Arises whenever Γ(i→f ) ≠ Γ(i→f ) due to
interference of at least two partial amplitudes
with different weak and strong phases

• First observed in K→ππ decay
(tiny effect, parameter ε’~10-6)

• Recently observed in many B-meson decays,
e.g.: B→πK, B→πρ, B→η’K

• sometimes large effects, O(0.1-0.3)
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Amplitude interference

• Rates for rare, charmless B decays are
characterized by significant interference of
tree and penguin amplitudes:

! 

" = Tei#1 e$ i% + Pei# 2

)cos(cos~)()( jifBfB !!" #$%+$%

)sin(sin~)()( jifBfB !!" #$%#$%

Amplitudes:

Rates:

Asymmetries:
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B0 π+

π -
W

b

u
u

d

d

B0

π+

π -

W
t,c,u

Amplitude interference
Trees:

Penguins:

(Hurth)

Vub~ e-iγ
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Interfering penguins …
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Reality is far more complicated

• Nonleptonic weak decays were long thought
to be intractable to theory

• First rigorous theoretical description:
– QCD factorization
– “Soft-collinear effective theory”

d

b u u

d

B0 π+

π -
W

Beneke, Buchalla, MN, Sachrajda 
(1999-2003)
Bauer, Pirjol, Stewart (2000-2005)
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CP violation in the interference
of mixing and decay
• Arises in decays of neutral mesons into CP

eigenstates
• CP-conserving (“strong”) phase develops

due to quantum-mechanical time evolution
of states

B0          B0

f
A A
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CP violation in the interference
of mixing and decay
• If decay amplitude contains a single weak phase ϕA,

the resulting time-dependent CP asymmetry can be
calculated without hadronic uncertainties:

    with:

• Most useful class of CP asymmetries for B factories

)(2sin)( AfS !" #±=

! 

ACP (t) =
"(B 0(t)# f )$"(B0(t)# f )

"(B 0(t)# f )+"(B0(t)# f )
= S( f )sin(%mB t)
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CP violation in the interference
of mixing and decay
• “Golden” mode:

B→J/ψ KS

• Amplitude real to good
approximation, φA= 0

• CP asymmetry 
S(f)=sin2S(f)=sin2ββ yields CP-
violating phase even
without any knowledge
about decay amplitudes

• Theoretical uncertainty
very small (~1%)

B0

b

s
c

c

d
KS

J/ψ
W
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PrePreccision ision 
Studies of the CKM  MatrixStudies of the CKM  Matrix

Overdetermination Overdetermination of theof the
unitarity unitarity triangletriangle
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Unitary triangle determinations
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Unitary triangle determinations

 Extraction of |Vub| in
semileptonic B decays

 Theoretical uncertainty
recently reduced to 7%

Bosch, Lange, MN, Paz (2004, 2005)
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Unitary triangle determinations

 Extraction of |Vtd| in
B0-B0 mixing (Bd and Bs)

 Hadronic uncertainty
(lattice QCD)

Tevatron very important!
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Unitary triangle determinations

 Extraction of Im(Vtd
2) in

K0-K0 mixing
 Large hadronic

uncertainty (lattice QCD)
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Unitary triangle determinations

 Extraction of sin2β in
B0-B0 mixing

 No theoretical uncertainty!
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Determination of γ in B→πρ, ππ

• Rare decays B→ππ, B→ρπ are dominated by tree
topologies, but also receive penguin contributions

• In limit of negligible penguins, decay amplitudes
carry the weak phase ϕA= -γ, in which case the
time-dependent CP asymmetries would measure
sin2(β+γ)=sin2α

• Can use QCD factorization to estimate and correct
for “penguin pollution”
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Determination of γ in B→πρ, ππ

• B→PV modes receive
smaller penguins than
B→PP modes

• Possibility to extract γ
with small theoretical
uncertainties from time-
dependent rates in B→πρ,
with B→ππ as cross check

• Result:

 γ = (62±8)o 
Beneke, MN (2003)

B→πρ

B→ ππ

Old data

Old data
New data

New data
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Sides vs. angles
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Tree vs. penguin processes
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Facit

• CKM model of flavor- and CP violation
works beautifully

• Definitely the main source of these effects
• “New Physics” can only give corrections to

the CKM picture
• Yet, there is hope and possibility for finding

and studying significant “New Physics”
contributions in some weak decays!
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Hints of Hints of ““New Flavor PhysicsNew Flavor Physics””??

““New PhysicsNew Physics”” in loop processes? in loop processes?
““New PhysicsNew Physics”” in in  B-BB-B  mixing?mixing?

Facts or fiction?Facts or fiction?
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CP asymmetries for B→ΦKS,η’KS

• Interference of  mixing
and decay:

• Phase structure identical
to B→J/ψ KS

• Theoretical prediction:

• Penguin graph real in
excellent approximation

b

s
s
s

d

B0

KS

Φ
W

t,c,u
g,Z

B0         B0

ΦKS

S(ΦKS) - S(J/ψ KS) = 0.02±0.01 Beneke, MN (2003)

Grossman, Worah (1996)
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2005: seven reasons for excitement!

Theory

0.42±0.08Avg.:

Beneke, MN
 (2003)

Deviation of 3.8σ !
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Present situation

• Standard ruler (golden mode)
reduced to 0.68±0.03

• Average value from penguin
modes raised

Theory corrections

0.53±0.05Mittelwert:
Deviation 2.4σ
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(sin2β)tree vs. (sin2β)penguin

• Explanation of the effect in terms of new
penguin contributions (e.g. SUSY),
preferably in electroweak sector

?

Curious what’s in 
my belly?

Go check at LHC!
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Another example:
“New Physics” in Bd,s mixing?
• General parameterization:
                    Δmd = Δmd

SM * rd
2 ei2θ d

• “New Physics” contributions up
to ~50% of SM still allowed

• Even more room in Bs mixing
• After discovery of new particles

at LHC → allowed parameter
space for new flavor parameters
(e.g., quark-squark-gluino
couplings in SUSY)
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Conclusions

• Flavor physics has enjoyed more than two decades
of active experiments and spectacular progress

• It remains an important component of the particle-
physics program in the LHC era
(complementarity)

• Indirect searches for “New Physics” will greatly
profit from LHC discoveries

• Deviations from Standard Model predictions will
then be interpreted as measurements of new flavor
parameters!


