
  

The Theory of Hadronic 
Collisions

William Kilgore
Brookhaven National Laboratory

Hadron Collider Physics Summer School
August, 2006



  

The Theory of Hadronic Collisions
In my first lecture, I discussed the origins of 
QCD, which were largely experimental in nature.
Both the Quark and Parton Models were 
phenomenologically driven.  Feynman used a 
great deal of field theory intuition in developing 
the parton model, but the structure was set by 
the need to explain scaling in DIS.
Rigorous theoretical developments, like non-
Abelian gauge theories, the anomaly in 0 decay 
and Asymptotic Freedom came late in the game.



  

Quantum ChromoDynamics

Having established its experimental pedigree, I 
devote this lecture to perturbative QCD and its 
application to the study of hadronic collisions.
I will discuss:
– Infrared Safety.
– The Factorization Theorem and perturbative QCD.
– Methods of applying perturbation theory.
– Examples of fixed order calculations.



  

Quantum Chromodynamics
With the discovery of Asymptotic Freedom, QCD 
(SU(3) gauge theory) was proposed as a 
fundamental theory of the strong interactions.
All the prescriptions and hand-waving arguments 
of the parton model had to be made rigorous.
In particular, one needed to:

– Specify what can be calculated.
– Derive factorization in DIS and hadron scattering.
– Define the parton densities.
– Identify Rules for performing pQCD calculations. 



  

Infrared Safety
The guiding principle of perturbative QCD is 
Infrared Safety.
Infrared Safe quantities do not depend on the 
long-distance behavior of QCD.  In particular, 
they are finite in the limit of vanishing masses 
so that
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Infrared Safety
            The  proof of Infrared safety comes       
            from the KLN theorem, which states       
            that fully inclusive measurements, which 
sum over all degenerate initial and final states, 
are free from infrared divergences.
The short distance physics of parton scattering 
does not interfere with the long distance 
process that turns partons into hadrons.
This is why jet production is computed as simple 
parton scattering.  The probability that partons 
will produce hadrons is unity.

T.D. Lee



  

Infrared Safety
What about less inclusive processes?
The KLN theorem can be extended to cover 
differential cross sections.  The key is to 
understand the origin of infrared divergences.
Sterman showed that all infrared divergences 
are related to either soft or collinear 
momentum configurations.
As long as a measurement is “sufficiently 
inclusive”, i.e. it sums over the soft and collinear 
configurations, it will be Infrared Safe and 
calculable in perturbative QCD.



  

Infrared Safety
For an operational definition of infrared safety, 
consider a higher order calculation:

where SJ
n
 is a measurement function for 

observable J.  Infrared safety requires that:

2 J  =∫dn

dn
2

dn

S n
J  p1, , pn

∫dn1

dn1
1

dn1

S n1
J  p1, , pn1

∫dn2

dn2
0

dn2

S n2
J  p1, , pn2

S n1
J  p1, ,1− pn , pn=S n

J  p1, , pn , 01

S n1
J  p1, , pn ,0=S n

J  p1, , pn.



  

The Factorization Theorem in DIS
The Factorization Theorem (Collins, Soper, 
Sterman) is the field theory realization of the 
parton model.  For DIS, it states that:

The C(i)
a
 are hard scattering functions. They are 

IR safe and calculated from Feynman diagrams.
The i/p are parton distributions and contain all 
of the infrared sensitivity of the cross section.  
However, they are universal to all C(i)

a
.
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Factorization in Hadron-Hadron 
Collisions

The factorization theorem also justifies the 
extension of the parton model to hadron-hadron 
collisions.  Here it states:

The key departure from the simple parton model 
picture is that factorization works only to 
leading order in Q2.  At low Q2, caveat emptor!
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Factorization for Drell-Yan
A crucial piece of 
the factorization 
theorem is that 
soft exchanges 
between the 
incoming hadrons 
cancel at the 
leading power of 
1/Q2.
Power corrections at low Q2 explain why early Drell-
Yan measurements did not support the parton model .



  

The Factorization Theorem
The fundamental aspect of the factorization 
theorem is the separation of long-distance and 
short-distance effects.  The factorization scale 
 is arbitrary.

All long-distance initial-state physics is 
contained in a/A, b/B.  Short-distance physics is 
in  and is computed in perturbation theory.

A B J  =

∑
a , b=q ,q , g

∫
xA

1

d A∫
xB

1

d B ab J 
x A

A

,
xB

B

,Q , ,s ,a /AA ,b/ BB ,

O 1/Q2

ˆ



  

Parton Distributions
We would like to define parton density functions 
like those in the parton model.  That is, for 
instance, u/p(x) representing the probability of 
finding a u-quark in the proton with momentum 
fraction between x and x+dx.

Since we are now working within a fundamental 
theory where one can calculate radiative 
correction, however, we must demand a rigorous 
definition.



  

Parton Distributions

q j /h
x , = 1

4
∫ d y−e−i x p y−〈 p∣ j 0, y− ,0T 

W y− ,0 j0∣p〉R

q j /h
x , = 1

4
∫d y−e−i x p y−〈 p∣ j 0, y− ,0T 

W y− ,0 j0∣p〉R

g/h  x ,= 1
4
∫d y−e−i x p y− 〈 p∣F a

 0, y− ,0T 
W y− ,0Fa

0∣p〉R

W  y− ,0  = P exp [i g∫0

y−

ds− Aa
0, s− ,0T  t

a]

Parton Distribution Functions are defined in 
terms of matrix elements of renormalized 
operators in QCD.  For a hadron h with 
momentum p,

Where W is a Wilson line,



  

Parton Distributions
Observations:
1) PDFs are non-perturbative.

The matrix elements involve the proton wave function.  They 
must be extracted from measurements.

2) PDFs are Ultraviolet Singular.
Renormalization spoils the interpretation as number densities. 
Treated as distributions, they still satisfy sum rules.

3) PDFs are renormalized.
They obey renormalization group equations (the DGLAP 
equations), and evolve in Q2.

4) PDFs are universal.
They are process independent.  PDFs determined in DIS can 
be used in hadron-hadron collisions.



  

Parton Evolution
Unlike the parton densities of the parton model, 
PDFs evolve in Q2 according to DGLAP equations:

where

The splitting functions Pab(x) are now known 
through order s
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Determining PDFs

PDFs are determined by comparing perturbative 
QCD calculations to experimental results.
Experiments are sensitive to different 
combinations of the PDFs, over differing ranges 
of parton momentum fraction x and are 
performed at a variety of values of Q2.
The fitting procedure must take the evolution in 
 Q2 between experiments into account.



  

Fitting PDFs
A wide variety of data are used to fit PDFs.
● DIS Structure Functions at H1 and ZEUS
● W (lepton) asymmetry at CDF
● Inclusive Jet Production at Tevatron
● Fixed target DIS (proton and deuteron)
● Fixed target Drell-Yan (proton and deuteron)
● Neutrino DIS (nuclear target)

The low energy data often require corrections 
to deal with “higher twist” effects.  Deuterium 
and nuclear data require still more corrections.



  

PDF Fits
W boson
charge
asymmetry

Z/* 
rapidity
distribution



  

PDF Fits
Modern PDFs fit the available data very well.



  

PDF Fits
CTEQ6M at two different values of Q:



  

PDF Fits
Still the gluon is hard to constrain.



  

PDF Uncertainties

For many years, PDF “best fits” were 
distributed without any serious attempt to 
quantify how good the best fits were.

It is now common for PDF fitters to produce 
sets of PDFs that map out a range of “good” 
fits.  Averaging over the sets introduces 
uncertainty to Monte Carlo calculations that 
reflect the uncertainty in the input PDFs.



  

PDF Uncertainties (CTEQ6)



  

The Hard Scattering

The PDFs contain all of the initial state long-
distance physics.  The short-distance physics is 
contained in the hard-scattering cross section, 
often called the partonic cross section.  

The partonic cross section is computed by using 
the Feynman Rules to calculate on-shell matrix 
elements of (usually) massless quarks and gluons, 
which are then integrated over the phase space 
of the final state partons.



  

Feynman Rules for pQCD
ℒQCD =−

1
4
F a F

a  qi i Dij q j − mqqi qi − 
a∂ D

acc

F
a = ∂ A

a−∂ A
a  g f abc A

b A
c

Dij
= ∂ij− i g t ij

a Aa , D
ab = ∂

ab − g f abc A
c



  

Applications of Perturbation 
Theory in QCD

There are several techniques for applying 
perturbation theory to QCD:

Fixed Order: All contributions are computed up to 
a specified order of s.
Resummation: For some observables, perturbation 
theory breaks down due to log enhancements       
(s ln  ~ 1).  but, one can resum to all orders.
Parton Showers: (See Sjostrand's lectures)  
Provide more realistic events than fixed order, but 
are usually based on lowest order matrix elements.



  

Fixed Order Calculations in QCD

This is the simplest technique and is also the 
easiest to carry forward to higher orders.

The idea is to compute all quantities up to a 
certain order of s.  However, different 
processes start at different orders of s.

Drell-Yan starts at order s
0, while n-jet 

production starts at order s
n.



  

Higher Order corrections.
For any process, the lowest non-trivial order of 
s is called Leading order, or LO.

Leading Order (LO) calculations are performed at 
the Born level.

Next-to-Leading Order (NLO) calculations include 
one-loop corrections to the Born process and 
Single Real Radiation corrections

Next-to-Next-to-Leading Order (NNLO) 
calculations include two-loop corrections to Born, 
one-loop corrections to Single Real Radiation terms 
and Double Real Radiation correction.



  

Limitations of Fixed Order 
Calculations

Experience has shown that LO calculations are 
of only qualitative value,  often getting the 
normalization and shapes of distributions to 
within 10-20 percent.  Often they do worse.
NLO is the first serious approximation.  
Unfortunately, the state of the art currently 
allows for loop calculations with 5 (6 is coming) 
external partons.
NNLO is only available in a few special cases.



  

Limitations of Fixed Order 
Calculations

Many important backgrounds will be computed at 
NLO in the near future.  The improved accuracy 
will be a boon, but fixed order still leaves a lot 
to be desired in terms of event simulation.
At LO, each parton is identified with a jet.  A 
LOT of structure is being left out.  Even at 
NNLO, a jet can contain at most 3 partons!
There is great demand for combining the 
accuracy of NLO with the event simulation of 
parton showers.



  

Example: Inclusive Drell-Yan at NLO

qq Born 
and virtual 
terms.

qq Real 
emission 
terms.

qg Real 
emission 
terms.

We compute all terms at orders s
0 and s

1:



  

Drell-Yan at NLO
If we are fully inclusive, we treat the  pair as a 
massive vector boson and thus have a 21 
virtual process.  We integrate the squared 
amplitudes over phase space,

and combine real and virtual terms
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Drell-Yan at NLO
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The result still has poles in !  Something is 
missing



  

Mass Factorization
The parts of the real-emission terms where the 
final state parton is collinear with the beam 
have already been included in the parton 
distributions.  Those pieces must therefore be 
removed from the real emission terms.
This is done by adding in the Mass Factorization 
Counterterms, which are convolutions of lower-
order terms with the DGLAP splitting functions.
 ij = ∑

ij=q ,q , g

ab⊗ai⊗bj , ij  x = 1−x ij−
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P ij
0 x
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 f ⊗g x =∫
0

1
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0

1

dz f  y g  z   x− yz 



  

Drell-Yan at NLO
Adding in the Mass Factorization Counterterms

we get the correct (finite!) result:
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Drell-Yan at the Tevatron
Experimental Measurements compared to NNLO 
QCD calculation of Drell-Yan production.
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Example II: Jet Production

The previous example of an NLO calculation was 
special for a number of reasons:
There was no need to renormalize
One could perform the total integrals
We were not interested in the hadrons in the 
final state, so we needed no jet algorithms.
Let us now look at jet production.



  

Jet Production
Again, we have Born, virtual and real emission 
terms.  For simplicity I have drawn only all-gluon 
diagrams.



  

Jet Production
When computing jet production, we can't do the 
total integrals as we did for Drell-Yan.
Even if we could, there is far more information 
to be had from differential distributions.
To compute differential distributions, we need 
to impose acceptance cuts, etc., in order to 
approximate the experimental environment.
This is virtually impossible in an analytic 
calculation, so we adopt numerical techniques 
and perform Monte Carlo integrations over 
phase space.



  

Numerical Integration at NLO
The problem with numerical integration at NLO 
is that there are infrared divergences all over 
the place.  The one-loop amplitudes have explicit 
infrared poles, while the real radiation terms 
diverge in soft and collinear configurations.
We need some method of regulating the 
divergences so that we can compute the (finite!) 
NLO cross section with good numerical accuracy.
Most of all, we would like a flexible algorithm 
that can be applied to a variety of processes.



  

Universality of Infrared Structure

It is possible to develop a multipurpose 
algorithm for NLO calculations because the 
infrared structure of QCD amplitudes is 
universal and the amplitudes factorize.
One loop amplitudes take the form,

where V contains all infrared poles and 
multiplies the Born amplitude.  M(1),f is infrared 
finite.

M 1 p1, , pn = V 1 p1, , pn M
0 M 1 , f  p1, , pn



  

Universal Infrared Structure
Real radiation amplitudes factorize in the soft 
and collinear limits.

The soft and collinear functions, S and C, 
integrated over phase space, generate the 
infrared poles to cancel those in loop amplitudes.
Integrating over S and C to cancel the virtual 
poles is another way of saying the measurement 
is “sufficiently inclusive” to be infrared safe.

lim
pn∥pn1

M n1
0  p1, , pn , pn1 = C  pn , pn1 ; K ×M n

0 p1, , pn−1 , K 

lim
pn10

M n1
0  p1, , pn , pn1 = S  pn , pn1 , p1×M n

0 p1, , pn



  

NLO  Jet Production

To summarize: Next-to-Leading Order 
calculations consist of two contributions:

Virtual Corrections to one loop.

Single Real Emission Corrections at tree-level.

NLO=∫
n1

d n1
0

∫
n

d n
1

Both terms are infrared singular.



  

One scheme is to add a local counter-term to 
the Virtual terms and subtract it from the 
Real Correction terms, canceling the infrared 
singularities.  This is the Subtraction Method.

Both terms are now infrared finite.

NLO=∫
n1

d n1
0 − d n1

0 

∫
n

d n
1 ∫

n1

d n1
0

A Multipurpose Approach to NLO



  

Q:How can we construct this local counterterm? 
A:By making use of the universality of the           
   infrared structure of QCD amplitudes.
We define the local counterterm in (n+1)  body 
phase space as

where D is a function of  p1,pn,pn+1, (which define 
the momenta k1,kn) which has the same infrared 
structure as the real emission amplitude.  Mn is 
the on-shell n-point Born amplitude.

The Subtraction Method

An1
0  p1, , pn1 =D  pn , pn1 , p1 ; kn , k1 M n

0k 1, p2, , pn−1 , k n 



  

The Subtraction Method

Phase space can be factorized in such a way that 
the three particle phase sub-space d(p1,pn,pn+1) 
can be integrated down to the two particle 
subspace d(k1,kn).
Only |D|2 varies under this integration, which 
exposes the infrared poles that cancel those of 
the loop amplitude as in the KLN theorem.

∫
3 p1, pn , pn1/2k 1,kn

dn1 p1, , pn1∣A∣
2= V 1k 1, , k n∣M n

0k 1, , k n∣
2



  

Subtraction at NLO

Both terms are now infrared finite.

NLO=∫
n1

d n1
0 − d n1

0 

∫
n

d n
1 ∫

n1

d n1
0

To Summarize:
A subtraction scheme adds (and subtracts 
back out) a local counter-term to both Virtual 
and Real Correction terms, canceling the 
infrared singularities.



  

Jet Clustering



  

Jet Clustering

The hadronic clusters clearly reflect some 
underlying structure and are best treated as 
individual “jets” than as groups of hadrons.
Two questions:

What is the best way of grouping the hadrons 
into jets?
How do we make contact with the hard 
scattering processes of perturbative QCD?



  

Jet Clustering Algorithms

There are two primary algorithms for clustering 
jets: Cone Algorithms and kT Algorithms.
Cone algorithms are based on geometry.  They 
group all particles that lie in a cone extending 
from the beam spot to a “circle” in - space.
kT Algorithms cluster hadrons (or calorimeter 
towers) according to their transverse 
momentum relative to their neighbors.



  

Partons and Jets
The hard scattering produces quarks and gluons 
and does not address the hadronization process.
The appearance of jets can be explained by 
identifying the hard partons as color charge 
antennæ and the jets as the radiation patterns 
that develop around the antennæ.
Dynamical considerations would prefer a kT 
algorithm, but radiation does tend to cluster 
around antennæ so cones make sense.
Both are used.  Both work fairly well.



  

Properties of Jet Algorithms
Both cones and kT can be used to construct good 
(or bad) jet algorithms.  An ideal algorithm has 
the following properties:

1) It is fully specified.  There is a definite 
procedure for handling any configuration.

2) It must be theoretically well behaved.  In 
particular, it must be Infrared Safe!

3) It should be detector independent.

4) It should behave the same whether operating on 
parton, particles or calorimeter cells.



  

Infrared Safety in Jet Clustering
When Sterman and Weinberg first discussed 
jets in e+e- collisions, they emphasized that jet 
clustering must implement infrared safety by 
summing over soft and collinear configurations.
Still, unforeseen problems can arise.  The CDF 
Run-I cone algorithm turned out to have an 
infrared sensitivity that would affect 
calculations at NNLO and beyond.



  

Jet Production at the Tevatron



  

Other Important Issues
There are many important issues that I have 
barely mentioned or ignored completely.

Resummation:  This is very important for threshold 
production processes and pT spectra.
Fragmentation:  Identified hadrons are very 
important to B physics and to Higgs searches.
Diffraction: Inelastic scattering where the 
protons remain intact.

A very important topic to be taken up by T. 
Sjostrand is that of parton showering Monte 
Carlo calculations.



  

Resummation can be Essential
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Identified Hadrons
If there are identified hadrons in the final 
state, (say ,J/,  mesons or photons ) these 
are included through “Fragmentation Functions”, 
which are to some degree the inverse of the 
parton distributions:

The Fragmentation Function Dh/c(z) represents 
the probability of finding hadron h in the decay 
products (jet) of a parton of type c, carrying 
fraction z of the parton's momentum.

Dh/q j
x , = 1

12
∑

X
∫ d y−e−i p y− /z Tr〈0∣ j 0, y− , yT W y− , 0∣h  pX 〉

×〈h  pX∣W y− , 0 j 0 ∣0〉R



  

Identified Hadrons
The fragmentation functions are non-
perturbative objects and must be fit to data!
Bad fragmentation functions give wrong results!



  

Conclusions
The basic Parton Model picture of hadronic 
collisions has been given a rigorous theoretical 
definition within Quantum ChromoDynamics.
The application of perturbation theory is limited 
by the demand of Infrared Safety which follows 
from QCD dynamics and its infrared structure.
Realistic applications of perturbative QCD 
require a vast machinery involving PDFs, loop-
level scattering processes, resummations, 
fragmentations, parton showers and more.


