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What We'll Cover Today

v

Group activity! (5 mins)
Track Reconstruction

» Charged Particles
» Helixes

>
» Track parameterization » Fitting: y2, Kalman
» Energy loss filter
» Reconstructing Hits » Multiple scattering
» Detectors: drift, Si, » Alignment
fiber » Multiplicity and fakes
» 2D points .
~ 3D points » Vertexing
» 4D points? » B-Tagging
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CMS Tracking Chamber
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Basic Idea

When we talk about “tracking,” we want to do the
following:
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Basic Idea

When we talk about “tracking,” we want to do the
following:

» Measure the true path of the charged particle, which
let's us know...

» The momentum (3-momentum) if we know the
magnetic field

» The sign of the charge of the particle

» With other constraints or assumptions, the “origin” in
space of the particle

» Without some other detector though, we can't measure
the mass independently just with a tracker
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Lorentz Force: q(% x B)
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Helicoidal Tracks

» For a solenoidal magnetic field (ie the main magnet), z
is along the field direction
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Helix Parameters

We can decompose the momentum of a track in spherical
coordinates [1]:

px = pcososinf

py = psingsin{
p, = pcosf
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Helix Parameters

We can decompose the momentum of a track in spherical
coordinates [1]:

px = pcososinf
py = psingsin{
p, = pcosf

Different experiments choose different ranges for the angles,
it's important that you figure out what they are using:
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Helix Parameters

We can decompose the momentum of a track in spherical
coordinates [1]:

px = pcososinf

py = psingsin{
p, = pcosf

Different experiments choose different ranges for the angles,
it's important that you figure out what they are using:

¢ S [_7T77T] 0 € [07 7T]
There must also be some “reference point” in space to

uniquely define our helix: (x,, y,, z,)
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Helix Parameters in x — y Plane

This parameterization is more closely related to things we
actually measure with our trackers

y
i » C: Curvature of the

track. Signed with
charge.

» ¢o: Azimuthal angle of
the momentum at the
point of closest approach

» O: Distance of closest

approach. (Also signed,
but differently.)

(e, ye)
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Transverse momentum

The component of the momentum in the x — y plane, the
transverse momentum pt or py, is given by
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Transverse momentum

The component of the momentum in the x — y plane, the
transverse momentum pt or py, is given by

B[kG] c[mm/s] 1010
C[mm™1]
_ B[T] c[cm/s] 10713
Clem—1]
pL = psinf

piL[GeV] =
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p, vs Curvature in a 4T Homogeneous Field (CMS)
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Use pt to separate wheat from chaff

Minimum bias events

Luminosity = 1034 cm2s' = 107 mb-"Hz
Interaction rate = 107x80 = 8x108 Hz
Interactions/crossing = 20

o(pp) = 80 mb at 14 TeV
Bunch crossing = 25 ns = 2.5x108 s

Higgs event
+

~25 minimum bias events

Reconstructed tracks / M
with pt > 25 GeV ; —.
7 M
P Hg P
e
2=
Ly

V. Chiochia — Silicon Tracking Detectors for the LHC experiments, DESY Seminar, March 7!" 2006 Updated /ﬁugust 14, 2006



Z=2zy+ stan \

(s, )
»/A: Dip angle of track, or

could also use
» 0: Polar angle of track

» z9: The z of the track at
the point of closest
approach in x — y

(s, 20)
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Energy Loss

» If a charged particle passes through material, it can lose
energy and slow down and change direction somewhat
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Energy Loss

» If a charged particle passes through material, it can lose
energy and slow down and change direction somewhat

» As a particle bends in the magnetic field, it can emit
bremsstrahlung and slow down

Our model of the trajectory of the charged particle has to
take these effects into account if they are important
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Tracking Detector

» Should have the least amount of material as possible
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Tracking Detector

» Should have the least amount of material as possible
» Should have as many measurements of the trajectory as
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Tracking Detector

» Should have the least amount of material as possible
» Should have as many measurements of the trajectory as

possible
» To measure pt well, the longer the lever arm the better
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Tracking Detector

v

Should have the least amount of material as possible
Should have as many measurements of the trajectory as
possible

To measure pr well, the longer the lever arm the better
Measurement points should be as precise as possible

v

v

v
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electric field. Drift time and position must be precisely
known
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Some of the main technologies in use right now covert the
energy lost by a charged particle with
» Gas and wire: ions in gas drift to wire under influence of
electric field. Drift time and position must be precisely
known
» Scintillating fibers
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Tracking Detector

v

Should have the least amount of material as possible
Should have as many measurements of the trajectory as
possible

To measure pr well, the longer the lever arm the better
Measurement points should be as precise as possible

v

v

v

Some of the main technologies in use right now covert the
energy lost by a charged particle with
» Gas and wire: ions in gas drift to wire under influence of
electric field. Drift time and position must be precisely
known
» Scintillating fibers
» Semiconductor: usually silicon, fully depleted. Charge is
collected in precisely laid down strips or pixels
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CDF's COT

\
\

Figure 2. 1/6 section of the COT end plate. For cach

3 z = Gl o sense and fild sot geometry in detail. Dimensions are in
= } &

Figure 4. The COT during “stringing’ of the wire planes and field sheets. The carbon composite inner cylinder, aluminum end plate
(east) and aluminum outer cylinder are visible. Superlayers 1-5 have been strung and superlayer 6 is about half done. A wire plane is
being inserted at 10:00 and a field plane at 4:00. Pre-tension fixtures are seen in superlavers 6 — 8.
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Silicon Strip Module
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CMS AIll Silicon Tracker

03 04 05 06 0T 03 (L] 11 13

RNV / P

zview 7

=552 tEEdEEEEE

4a0 A 210 1maa g 140 16ga 1300 Naa g 1410 2600 230

Updated August 14, 2006



CMS All Silicon Tracker




DO Fiber Tracker

[ | T T B ]
f =

'I\‘II\.—J'IHI[I‘\IA !

: i

RN -] August 14, 2006



CMS Pixel Detector
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2D Point (r¢por rz): x=(D_i*qi)/ > qi
|
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Resolution of Si Strip Detector

» The resolution of a Si hit depends on the number of
strips in the cluster (2-strip most precise)
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Resolution of Si Strip Detector

» The resolution of a Si hit depends on the number of
strips in the cluster (2-strip most precise)

» Charge drifts with Lorentz force: q(E + @ x B)
» Thin material: Landau distribution of charge [2]
» Track impact angle & position makes a difference [3]
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Resolution of Si Strip Detector

» The resolution of a Si hit depends on the number of
strips in the cluster (2-strip most precise)

Charge drifts with Lorentz force: q(E + % x B)
Thin material: Landau distribution of charge [2]

v

v

v

Track impact angle & position makes a difference [3]

v

Delta rays (hard knock e™) can bias charge distribution
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Resolution of Si Strip Detector

|

The resolution of a Si hit depends on the number of
strips in the cluster (2-strip most precise)

Charge drifts with Lorentz force: q(E + % x B)

Thin material: Landau distribution of charge [2]

Track impact angle & position makes a difference [3]
Delta rays (hard knock e™) can bias charge distribution

Dead channels, noise, Vgep, temperature all could affect
this too
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The resolution of a Si hit depends on the number of
strips in the cluster (2-strip most precise)

Charge drifts with Lorentz force: q(E + % x B)

Thin material: Landau distribution of charge [2]

Track impact angle & position makes a difference [3]
Delta rays (hard knock e™) can bias charge distribution

Dead channels, noise, Vgep, temperature all could affect
this too

Radiation damage changes
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Resolution of Si Strip Detector

|

The resolution of a Si hit depends on the number of
strips in the cluster (2-strip most precise)

Charge drifts with Lorentz force: q(E + % x B)

Thin material: Landau distribution of charge [2]

Track impact angle & position makes a difference [3]
Delta rays (hard knock e™) can bias charge distribution

Dead channels, noise, Vgep, temperature all could affect
this too

Radiation damage changes
Pileup from previous event
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Resolution of Si Strip Detector

|

The resolution of a Si hit depends on the number of
strips in the cluster (2-strip most precise)

Charge drifts with Lorentz force: q(E + % x B)

Thin material: Landau distribution of charge [2]

Track impact angle & position makes a difference [3]
Delta rays (hard knock e™) can bias charge distribution

Dead channels, noise, Vgep, temperature all could affect
this too

Radiation damage changes
Pileup from previous event
Multiple particles passing through same strips

Updated August 14, 2006



Typical Resolution of 50 pum Strips (CDF)

Residual/Err After Cuts
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Typical Resolution of 50 pum Strips (CDF)

Cluster Width | Resolution

Residual/Err After Cuts Nent = 1005
Mean = 4.406e-06
[ After final iter RMS = 1
Final iter and 2.5 o cut Under= 0
a0, 5 Over= 0
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Typical Resolution of 50 pum Strips (CDF)

S e Cluster Width | Resolution
25; EE;EEEE’ES;::‘LMQ 1 12 ILL m
20? Sigma = 1,015 - 0.02451 2 9 /J‘m
15? 3 14 /,Lm
10—

: 4+ 22 pm
5; . .

o ' » rz strips are either

shallow stereo ( 2°), or

—
“f e =] 90° stereo but larger
- owrs o pitch

» Intrinsic resolution of
larger pitch stereo
usually factor of 2+
worse than r¢
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3D Points

A three dimensional point is reconstructed if we know both
the local x and y coordinate on the detector element and we
know the detector’s location in space precisely.
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3D Points

A three dimensional point is reconstructed if we know both
the local x and y coordinate on the detector element and we
know the detector’s location in space precisely.

» If we have two simultaneous measurements in
orthogonal coordinates on a double-sided silicon
detector, or in a wire chamber or fiber tracker with axial
and stereo elements. We match the r¢ and rz
measurements and make a 3D space point — the
problem is the matching can be hard to do
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3D Points

A three dimensional point is reconstructed if we know both
the local x and y coordinate on the detector element and we
know the detector’s location in space precisely.

» If we have two simultaneous measurements in
orthogonal coordinates on a double-sided silicon
detector, or in a wire chamber or fiber tracker with axial
and stereo elements. We match the r¢ and rz
measurements and make a 3D space point — the
problem is the matching can be hard to do

» Si pixel detectors! These are little rectangles of silicon
which automatically give us 3D information without
matching info from axial and stereo components.
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3D Space Point from Pixel Detector
CMS barrel

I Local
plxel module Z  coordinates
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Typical Pixel Resolution (CMS):
8 — 20 um
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Pixel Stub! Impact angle (#) from shape

|_Pixel Info for Event2_| Single muon passing through barrel
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Can you find the 50 GeV pr Track?
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Can you find the 50 GeV pr Track?!
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Pattern Recognition & Track Fitting

Typlcally pattern recogn|t|on algorithms are either
“inside-out” or “outside-in.
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bootstrap your algorithm: a track seed
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hits in other layers
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“good track” should have
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Typlcally pattern recogn|t|on algorithms are either
“inside-out” or “outside-in.

» You have to start with some idea of the path of the particle to
bootstrap your algorithm: a track seed

» Then you take this candidate, this seed, can try to find compatible
hits in other layers

» Continue this process until you've met some criteria for what a
“good track” should have

» Once you've got your hits for your track, try to do a good job of
fitting your pseudohelix
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Pattern Recognition & Track Fitting

Typlcally pattern recogn|t|on algorithms are either
“inside-out” or “outside-in.

>

You have to start with some idea of the path of the particle to
bootstrap your algorithm: a track seed

Then you take this candidate, this seed, can try to find compatible
hits in other layers

Continue this process until you've met some criteria for what a
“good track” should have

Once you've got your hits for your track, try to do a good job of
fitting your pseudohelix

Psuedohelix because there is energy loss and multiple scattering
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Pattern Recognition & Track Fitting

Typlcally pattern recogn|t|on algorithms are either
“inside-out” or “outside-in.

>

You have to start with some idea of the path of the particle to
bootstrap your algorithm: a track seed

Then you take this candidate, this seed, can try to find compatible
hits in other layers

Continue this process until you've met some criteria for what a
“good track” should have

Once you've got your hits for your track, try to do a good job of
fitting your pseudohelix

Psuedohelix because there is energy loss and multiple scattering

There are also spurious hits from detector noise and low
momentum, unreconstructable tracks. These will mess up your

i, " -
true” helix
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Pattern Recognition & Track Fitting

Typlcally pattern recogn|t|on algorithms are either
“inside-out” or “outside-in.

>

You have to start with some idea of the path of the particle to
bootstrap your algorithm: a track seed

Then you take this candidate, this seed, can try to find compatible
hits in other layers

Continue this process until you've met some criteria for what a
“good track” should have

Once you've got your hits for your track, try to do a good job of
fitting your pseudohelix

Psuedohelix because there is energy loss and multiple scattering

There are also spurious hits from detector noise and low
momentum, unreconstructable tracks. These will mess up your

i, " -
true” helix
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Alignment is Crucial!

» Before you have a hope of matching hits from one layer
to the next to make a helix, your detector elements’
positions must be known to the level of your intrinsic
resolution
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resolution

» But how can you align your detector without tracks?
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» Before you have a hope of matching hits from one layer
to the next to make a helix, your detector elements’
positions must be known to the level of your intrinsic
resolution

» But how can you align your detector without tracks?

» This is the subject of part of Nick Hadley's talks on
calibrations
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» Before you have a hope of matching hits from one layer
to the next to make a helix, your detector elements’
positions must be known to the level of your intrinsic
resolution

» But how can you align your detector without tracks?

» This is the subject of part of Nick Hadley's talks on
calibrations

» But it is always an iterative procedure, bootstrapped by
a very good optical survey during construction and
installation
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Alignment is Crucial!

» Before you have a hope of matching hits from one layer
to the next to make a helix, your detector elements’
positions must be known to the level of your intrinsic
resolution

» But how can you align your detector without tracks?

» This is the subject of part of Nick Hadley's talks on
calibrations

» But it is always an iterative procedure, bootstrapped by
a very good optical survey during construction and
installation

» Here's an example (from ATLAS) of what needs to be
done...
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Global %2 fit — the idea

PHYSTAT'05 P. Briickman de Renstrom, S. Haywood
Oxford, 12-15 September 2005 Least Squares Approach to the Alignment




Kalman Filter

» The Kalman Filter [4] is an iterative procedure
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Kalman Filter

» The Kalman Filter [4] is an iterative procedure

» You start with a seed track. For example, a pair of hits
in the pixel detector that line up within 50 of the
primary interaction region
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Kalman Filter

» The Kalman Filter [4] is an iterative procedure

» You start with a seed track. For example, a pair of hits
in the pixel detector that line up within 50 of the
primary interaction region

» Then you add points on successive layers, taking into
account projected error from current hypothesis track
and multiple scattering
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Kalman Filter

» The Kalman Filter [4] is an iterative procedure

» You start with a seed track. For example, a pair of hits
in the pixel detector that line up within 50 of the
primary interaction region

» Then you add points on successive layers, taking into
account projected error from current hypothesis track
and multiple scattering

» Finally, if this track passes some requirements for a
minimum number of hits, you refit it (smooth) again
with the filter using a better starting point
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Track from

Kalman Filter in Action
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Tracking Resolution

The resolution of the various helix parameters depends on a
number of things
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The resolution of the various helix parameters depends on a
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» The number of hits used from various subdetectors
(hopefully, more is better)
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The resolution of the various helix parameters depends on a
number of things

» The number of hits used from various subdetectors
(hopefully, more is better)

» The momentum of the particle. Higher momentum
particles deflect less from multiple scattering

» The polar angle of the track ()
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Tracking Resolution

The resolution of the various helix parameters depends on a
number of things

» The number of hits used from various subdetectors
(hopefully, more is better)

» The momentum of the particle. Higher momentum
particles deflect less from multiple scattering

» The polar angle of the track ()
» Quality of alignment
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Tracking Resolution

The resolution of the various helix parameters depends on a
number of things

» The number of hits used from various subdetectors
(hopefully, more is better)

v

The momentum of the particle. Higher momentum
particles deflect less from multiple scattering

v

The polar angle of the track (n)

v

Quality of alignment
Presence of other tracks!

v
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Tracking Resolution

The resolution of the various helix parameters depends on a
number of things

» The number of hits used from various subdetectors
(hopefully, more is better)

v

The momentum of the particle. Higher momentum
particles deflect less from multiple scattering

v

The polar angle of the track (n)

v

Quality of alignment
Presence of other tracks!

v

Detector noise

v
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pr and dy Resolution (CMS)
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Single Track Reconstruction Efficiency

(CMS)
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Mult. Interactions Degrade Track Eff (DO)
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High Multiplicity Strategies

» If your inner layers are being swamped, use an
outside-in algorithm instead of an inside-out algorithm

» Try to boost efficiency for higher pr tracks by
reconstructing them first, and then remove these hits
from consideration

» Upgrade your detector
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Vertexing: Basic ldea

The basic idea of vertexing is to figure out where the
particles came from. We can associate tracks to particle
decays and interactions this way.
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Vertexing Strategy

» A vertex is a point where more than one particle comes
from
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Vertexing Strategy

» A vertex is a point where more than one particle comes
from

» If there is more than one track coming from the same
place, then the helixes should cross each other, right?
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» A vertex is a point where more than one particle comes
from

» If there is more than one track coming from the same
place, then the helixes should cross each other, right?

» Look for places where helixes cross
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Vertexing Strategy

v

A vertex is a point where more than one particle comes
from

v

If there is more than one track coming from the same
place, then the helixes should cross each other, right?

v

Look for places where helixes cross

Caveat: The track parameters p; = (C, ¢, dp, tan \, zp)
are different in different parts of the helix

v
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Track Parameters Depend on Reference
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Vertexing Algorithm

» If helixes cross, that means the track parameters must
be the same at some point
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» If helixes cross, that means the track parameters must
be the same at some point

» In 2D, this is as simple as looking for crossing circles

» But you can take full advantage of full track
parameterization and covariance matrix to look for
vertexes

Updated August 14, 2006
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» If helixes cross, that means the track parameters must
be the same at some point

» In 2D, this is as simple as looking for crossing circles

» But you can take full advantage of full track
parameterization and covariance matrix to look for
vertexes

» Most methods [5] are built on some kind of x? of track
parameters
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Vertexing Algorithm

» If helixes cross, that means the track parameters must
be the same at some point

» In 2D, this is as simple as looking for crossing circles

» But you can take full advantage of full track
parameterization and covariance matrix to look for
vertexes

» Most methods [5] are built on some kind of x? of track
parameters

Nt

X2 = Z_(:f: — ()" I™M (& - §(B))

]
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Vertex Algorithm Continued

» Again, we have a problem of pattern recognition
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Vertex Algorithm Continued

» Again, we have a problem of pattern recognition
» The x? can be defined for any collection of tracks
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Vertex Algorithm Continued

» Again, we have a problem of pattern recognition
» The x? can be defined for any collection of tracks

» Vertex algorithms are usually iterative however, pruning
or down-weighting tracks which make large
contributions to the x? (outliers)
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Vertex Algorithm Continued

» Again, we have a problem of pattern recognition
» The x? can be defined for any collection of tracks

» Vertex algorithms are usually iterative however, pruning
or down-weighting tracks which make large
contributions to the x? (outliers)

» Clumps, or clusters of tracks are what is searched for in
this way
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Vertex Resolution (CMS)

Filter x-coordinate z-coordinate
o Tails Pull o Tails  Pull
[pm]  [pm] [pm]  [pm]
ttH
Kalman 16.7 102 1.41 | 20.1 117  1.31
Adaptive | 12.2 28,0 097 | 16.2 41.8 0.97
Trimmed | 124 288 098 | 16,6 43.0 1.00
BY — J/1 ¢- primary vertex
Kalman 44.1 176 1.11 | 54.3 224 1.07
Adaptive | 38.4 949 094 | 48.7 140 0.94
Trimmed | 39.4 98.7 097 | 49.5 144 0.95
BY — J/4 ¢- secondary vertex
Kalman 54.8 164 1.08 | 73.8 471 1.08
Adaptive | 53.6 155 1.02 | 73.0 440 1.02
Trimmed | 54.0 174 104 | 750 502 1.05
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B-Tagging: Basic ldea

» B hadrons have lifetimes and
decay lengths distinct from
other species
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B-Tagging: Basic ldea

Run# 441525 Event# 1504 Total Energy: 110.38 GeV

» B hadrons have lifetimes and
decay lengths distinct from
other species

» Decay length is measurable in
a given event by finding a
vertex (“secondary”) and
taking the distance to the
“primary” vertex

Thrust: 9175 ‘ Major: 2847 ‘ Minor: 0800

Event DAQ Time : 800000 1
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B-Tagging: Basic ldea

Run# 441525 Event# 1504 Total Energy: 110.38 GeV

» B hadrons have lifetimes and
decay lengths distinct from
other species

» Decay length is measurable in
a given event by finding a
vertex (“secondary”) and
taking the distance to the
“primary” vertex

Thrust: 9175 ‘ Major: 2847 ‘ Minor: 0800

Lo B , » Can look for B hadrons by
: : finding these vertexes which
are compatible with known
properties of B hadrons
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Example B-Tag (DO)

* B Mesons
- Has finite life time
- Travels some distance from
the vertex before decaying
+~ 1lmm
\, - With charm cascade
- decay, about 4.2
- ' charged tracks

Impact Parameter (d) //- \ B
Hard Scatter

Vertex Tagging a B

Decay Lengh (L,,)

Impact Parameter d/o(d)

Resolution
Several algorithms under Decay Length
active development Resolution xy/ O'(ny)
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Summary

» Whew! There's a lot to tracking and vertexing and of
course we've just scratched the surface
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energy physics collider experiment

Updated August 14, 2006



Summary
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course we've just scratched the surface

» It is an absolutely crucial part of any modern high
energy physics collider experiment

» The only way to get good tracking and vertexing is to
really understand your detector
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Summary

» Whew! There's a lot to tracking and vertexing and of
course we've just scratched the surface

» It is an absolutely crucial part of any modern high
energy physics collider experiment

» The only way to get good tracking and vertexing is to
really understand your detector

» Thanks, and have fun in your discussion sections
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