Jet Energy Calibration

Beate Heinemann
University of Liverpool

Fermilab, August 14th 2006
Outline

• Introduction
• CDF and D0 calorimeters
• Response corrections
• Multiple interactions
• η-dependent corrections
• Underlying event and Out-of-cone energy
• Other calibration signals
• Conclusions

• Disclaimer:
 – Most discussion here valid for cone jets
 • Will make some comments on k_T jets
 – Will discuss CDF and D0 procedures as examples
 • ATLAS and CMS have no settled yet
Partons are produced in hard scatter

- Would like to know the energy of these partons
The parton will hadronise

- Hadronization is non-perturbative QCD phenomenon:
 - Phenomenological models implemented in MC:
 - Lund-Strong Model: PYTHIA
 - Cluster fragmentation: HERWIG

- Depends on energy and quark type
Multiple pp Interactions

- Overlapping interactions can overlap the jet
- Number of extra interactions depends on luminosity
 - LHC:
 - Low lumi \((L=1\times10^{33} \text{ cm}^{-2}\text{s}^{-1})\): \(<N>=2.3\)
 - High lumi \((L=1\times10^{34} \text{ cm}^{-2}\text{s}^{-1})\): \(<N>=23\)
 - Tevatron:
 - \(L=2\times10^{32} \text{ cm}^{-2}\text{s}^{-1}\): \(<N>=6\)

Offset depending on number of interactions
More than one parton per proton interacts

- Spectator partons can interact also and put energy into the same area as hard interaction

Offset, can depend on physics process
Hadrons enter calorimeter

- Calorimeter response determines what we measure

Correction depends on jet energy
Calorimeter response depends on angle

- Often calorimeters are different in forward vs central region
- There are often poorly instrumented regions (cracks) that have lower response

Correction depends on jet angle and energy
Noise can overlap with jet

- Depending on noise level in calorimeter the noise overlapping with our jet can be significant.

Offset depending on calorimeter noise level.
CDF calorimeter

• **Central and Wall (|\(\eta\)|<1.2):**
 - Scintillating tile with lead (iron) as absorber material in EM (HAD) section
 - Coarse granularity: \(\sim 800\) towers
 - Non-compensating
 • non-linear response to hadrons
 - Rather thin: 4 interaction lengths
 - Nearly no noise
 - Resolutions:
 • EM energies: \(\sigma/E=13.5\% / \sqrt{E} \oplus 1.5\%\)
 • HAD energies: \(\sigma/E=50\% / \sqrt{E} \oplus 3\%\)

• **Plug (1.2<|\(\eta\)|<3.6):**
 - Similar technology to central
 - Resolution:
 • EM energies: \(\sigma/E=16 \% / \sqrt{E} \oplus 1\%\)
 • HAD energies: \(\sigma/E=80 \% / \sqrt{E} \oplus 5\%\)
 - Thicker: 7 interaction lengths
DØ Calorimeter

- Same technology in central and forward calorimeter:
 - Liquid Argon with iron (stainless) as absorber in EM (HAD) calorimeter
 - Fine granularity: ~50K cells
 - Depth:
 - 7.2-8.0 interaction lengths
 - Compensating:
 - Compromised in Run 2:
 - Integrate charge only in 260ns due to shorter bunch spacing
 - Resolutions:
 - EM energies: $\sigma/E = 15\% / \sqrt{E} \oplus 0.3\%$
 - HAD energies: $\sigma/E = 50\% / \sqrt{E} \oplus 4\%$

Online calibration: see N. Hadley’s lecture
In Situ Calorimeter Calibration: Hadronic Energy

- Minimum Ionising Particle (MIP):
 - \(J/\psi \) and \(W \) muons
 - peak in HAD calo: \(\approx 2 \) GeV (in CDF)
 - Check time stability
- Minimum bias events
 - E.g. \(N_{\text{tower}}(E_T > 500 \text{ MeV}) \)
In Situ Calorimeter Calibration: EM Energy

- **MIP peak:**
 - If visible (CDF at 300 MeV)
- **Z→ee peak:**
 - Set absolute EM scale in central and plug
- **E/p for electrons**
 - After having calibrated p and material (see M. Shapiro’s lecture)
- **Minimum Bias events:**
 - Occupancy above some threshold: e.g. 500 MeV
Calibrating jets at a Hadron Collider

- **Hadron collider:**
 - Physics processes span entire jet E_T range: $0 < E_T < \sqrt{s}/2$
 - Calibration processes (photon-jet) run out of steam much earlier:
 - E.g. $d\sigma(\gamma)/dp_T = 0.001 \cdot d\sigma(\text{jet})/dp_T$
 - Unlike at HERA (NC process) or LEP/SLC (Z-resonance)
Two different approaches

- CDF and DØ use very different approaches
 - Documented in
 - CDF Run 2: hep-ex/0510047 (accepted by NIM)
 - DØ Run 2: http://www-d0.fnal.gov/phys_id/jes/public/plots_v7.1/index.html

- Main difference:
 - CDF uses test beam and single particles measured in-situ to understand absolute response of single particles
 - deduce jet response using simulation
 - Cross check with calibration processes like photon-jet data
 - DØ uses photon-jet data to measure absolute response
 - Extra correction for “showering” necessary

- Other differences:
 - CDF corrects separately for underlying event, multiple interactions, out-of-cone energy
 - DØ includes all these effects into one correction factor
Overview: CDF and DØ

• CDF calibrates P_T

$$P_{T, jet}^{corr} = \frac{P_{T, jet}^{raw} \times F_\eta - MI}{R}$$

• P_T^{corr}: calibrated jet P_T
• P_T^{raw}: raw jet P_T
• F_η: eta-dependent correction
• R: absolute response
• MI: multiple interactions

• DØ calibrates Energy

$$E_{jet}^{corr} = \frac{E_{jet}^{raw} - O}{F_\eta \times R \times S}$$

• E^{corr}: calibrated jet E
• E^{raw}: raw jet E
• F_η: eta-dependent correction
• R: absolute response
• O: offset energy
 – includes MI, noise, UE
• S: showering corrections

- Systematic error associated with each step
- additional corrections to get to parton energy
CDF: Detector to Particle Level

• Do not use data since no high statistics calibration processes at high $E_T > 100$ GeV
• Extracted from MC ⇒ MC needs to
 1. Simulate accurately the response of detector to single particles (charged pions, photons, protons, neutrons, etc.):
 CALORIMETER SIMULATION
 (CDF uses fast parameterization GFLASH, D0 uses GEANT3)
 2. Describe particle spectra and densities at all jet Et:
 FRAGMENTATION
 – Measure fragmentation and single particle response in data and tune MC to describe it
 – Use MC to determine correction function to go from observed to “true”/most likely Et:

\[E^{\text{true}} = f (E^{\text{obs}}, \eta, \text{conesize}) \]
Single Particle Response Simulation

- Single particle response:
 - Test beam
 - In situ:
 - Select “isolated” tracks and measure energy in tower behind them
 - Dedicated trigger
 - Perform average BG subtraction
 - Tune simulation to describe E/p distributions at each p (use π/p/K average mixture in MC)
Single Particle Response Simulation

- **MC models**
 - Hadron response at low p_T (in situ data) and high p_T (test beam data)
 - Electron response

Typical jet composition:
- 60% charged particles
- 10% protons
- 90% pions
- 30% neutral pions ($\rightarrow \gamma\gamma$)
- EM response
- 10% other (neutrons, ...)

CDF
electrons

test beam

In-situ
Fragmentation

- Due to non-linearity of calorimeters, big difference between e.g.
 - one 10 GeV pion: ~8 GeV
 - ten 1 GeV pions: ~6 GeV

- Measure P_T spectra of particles in jets at different E_T values as function of track P_T:
 - Typically mean rather low
 - Requires understanding track efficiency inside jets
Jet Correction to Particle Level

- MC convolutes response and particle momentum spectrum for us
 - Use tuned and validated MC to compare measured jet to jet at particle level
 - Systematic uncertainty given by how well MC simulation and fragmentation reproduced data
• Nearly independent of cone size
 – Response about 80% at $p_T=50$ GeV, 87% at $p_T=300$ GeV
Response correction using prompt photons

• Prompt photon process:
 – Photon well measured in calorimeter
 • Calibrated using electrons
 – Constraint: $E_T(\gamma) = E_T(\text{jet})$

• Complications:
 – Number of events at high E_T rather low:
 • $E_T(\gamma) > 300$ GeV, $\int L dt = 1$ fb$^{-1}$: 40 events
 – Background due to π^0’s
 • Purity: 30-80% for $E_T(\gamma) = 20$-100 GeV
 – Higher order processes:
 • Photon + 2 jets
DØ using prompt photons

• Reduce “physics effects”:
 – “MPF method”:
 • MPF=Missing Et Projection Fraction
 – Require jet to be back-to-back with photon:
 • $\Delta \phi > 3$ radians (>172°)

• Reach high $E_{T,\text{jet}}$:
 – Calibrate versus energy E_{jet}
 • Exploiting similarity between forward and central calorimeters
 – $\eta_{\text{jet}} \approx 0$: $E_{\text{jet}} \approx E_{T,\text{jet}}$
 – $\eta_{\text{jet}} \approx 2$: $E_{\text{jet}} \approx 3 E_{T,\text{jet}}$
Syst. Uncertainties on Response

• Varying assumptions gives systematic uncertainty
• In analysis data/MC difference counts in most cases
 – Same procedure done for MC
Multiple Interactions (MI)

- Need to know how many interactions there were:
 - # of z-vertices ~ # of interactions
- Throw random cones in Minimum Bias events
 - Determine average E_T per cone, e.g., CDF: 1 GeV for $R=0.7$
The complication for k_T algorithm

- Multiple Interactions are main reason for the difficulties with the k_T algorithm at hadron colliders
 - The method of throwing a random cone does not work:
 - they are not cone jets
 - k_T algorithm biases itself to go where the energy is and picks up energy from MI
- k_T algorithm has now been used by CDF in Run 2 for the jet cross section:
 - Empirical correction factor using fact that cross section independent of inst. luminosity
Relative Corrections

\[\beta = \frac{p_T^{\text{probe}}}{p_T^{\text{trigger}}} \]
Relative Corrections

- Mapping out cracks and response of calorimeter
- Central at ~ 1 by definition
- D0:
 - Response similar in central and forward
 - Two rather large cracks
- CDF:
 - Response of forward better than of central
 - Three smaller cracks
- Difficulties:
 - depends on E_T
 - Can be (most often is initially) different for data and MC
Corrections from Particle Jet to Parton

• Underlying event (UE) and Out-of-cone (OOC) energy
 – Only used if parton energy is wanted
 – Requires MC modeling of UE and OOC
 • Differences are taken as systematic uncertainty

\[P_{T, \text{parton}} = P_{T, \text{particle}} - UE + OOC \]
Underlying event definition:
- “beam-beam remnants”: energy from interaction of spectator partons
- “Initial state radiation”: energy radiated off hard process before main interaction
 - Not wanted when e.g. measuring the top quark mass

Can be estimated using Monte Carlo
- Measurements led to tuning of MC generators: PYTHIA, Herwig+Jimmy
Many studies exist about underlying event:
 - Checkout talks by Rick Field/U. of Florida

At LHC we will need to measure it:
 - Expect it to be much harder than at Tevatron

“Transverse” region very sensitive to the “underlying event”!
Out of Cone Energy (OOC)

- **Out-of-Cone Energy:**
 - Original parton energy that escapes the cone
 - E.g. due to gluon radiation
 - Jet shape in MC must describe data:
 - measure energy flow in annuli around jet
- **Differences between data and MC**
 - Lead to rather large systematic uncertainty
• CDF and DØ achieve similar uncertainties after following very different paths before
• Both collaborations have plans to improve further
Compare data and MC after calibration

- Data and MC agree within systematic uncertainties
Photon-Jet P_T balance

- Agreement within 3% but differences in distributions
 - Data, Pythia and Herwig all a little different
- These are physics effects!
• Better agreement of data and MC than in photon-jet data
 – In progress of understanding this better together with Herwig and Pythia authors
Calibration Peaks from W’s and Z’s

- Very, very difficult to see inclusive decays of W’s and Z’s to jets
 - Small signal on huge background
 - W+2 jets
 - Photon+2 jets (UA2)
- Two best opportunities:
 - W in top quark decays
 - Z in bb decay mode

UA2, S/B ~ 1/35, ~5000 Signal
\textit{In-situ} Measurement of JES

- Additionally, use $W \rightarrow jj$ mass resonance (M_{jj}) to measure the jet energy scale (JES) uncertainty.

Measurement of JES scales directly with data statistics.

2D fit of the invariant mass of the non-b-jets and the top mass:

$$\text{JES} \propto M(jj) - 80.4 \text{ GeV}/c^2$$
W\rightarrowjj Calibration in Top Events

- Fit for ratio of JES in data to JES in MC
 - CDF (1 fb$^{-1}$): $\delta_{\text{JES}} = 0.99 \pm 0.02$
 - DØ (0.3 fb$^{-1}$): $\delta_{\text{JES}} = 0.99 \pm 0.03$
- Constrain JES to 2% using 166 events

At LHC will have 45,000 top events/month!
• **Z→bb decay mode:**
 - Suppresses QCD background more than signal
 - Difficult to trigger
 - CDF uses secondary vertex trigger
 - D0 uses semi-leptonic decays collected by muon trigger

• Use this to measure difference between data and MC JES, e.g. DØ:
 - Data:
 - $\mu=81.0 \pm 2.2$
 - $\sigma=10.7 \pm 2.1$
 - MC:
 - $\mu=83.3$
 - $\sigma=13.0$
Conclusions

• Different calorimeters/collaborations can choose very different procedures:
 – CDF tunes simulation and then derives everything from MC
 • Systematic uncertainties depend on how well MC models data
 – DØ does a purely data based estimate
 • Systematic uncertainties depend on understanding of calibration process and sample composition

• Calibration signals:
 – MIP peak, E/p, Z→ee and Minimum Bias for calorimeter calibration
 – Di-jet balancing for relative response in cracks and in plug calorimeter
 – Isolated tracks for understanding calorimeter response to π’s
 • Fragmentation needs to be modeled well
 – Photon-jet balancing for relative and absolute response

• Independent channels used for cross checks/systematic error:
 – Photon-Jet and Z-jet balancing
 – Z→bb peak and W→jj peak in top events

• 3-4% systematic uncertainty achieved so far
 – Better for jets in top events (~2%)

Jets are very complex and rather tough to calibrate
Backup
Jet Energy Scale

- **Jet energy scale**
 - Determine the energy of the partons produced in the hard scattering process
 - **Instrumental effects:**
 - Non-linearity of calorimeter
 - Response to hadrons
 - Poorly instrumented regions
 - **Physics effects:**
 - Initial and final state radiation
 - Underlying event
 - Hadronization
 - Flavor of parton
- **Test each in data and MC**

\[
P_{T,\text{jet}}^{\text{particle}} = \left(P_{T,\text{jet}}^{\text{measured}} \times f_{\text{rel}} - MI \right) \times f_{\text{abs}},
\]

\[
P_{T,\text{parton}} = P_{T,\text{jet}}^{\text{particle}} - UE + OOC
\]
Offset correction in D0

Offset includes:
- Underlying event
- Multiple interactions:
 - # of Interactions ~ # of z-vertices
- Noise
- Pile-up from previous interaction
 - Due to long shaping time of preamplifier
- Measure
 - Minimum bias events per tower
 - Depending on number of vertices

![Graph showing offset energy vs. number of primary vertices](image)