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Motivation

Topological features of QCD:
Axial anomaly

η
′

mass
Predictions of RMT for each sector of Q in the ε regime

The low lying spectrum of staggered fermions appeared to be “topology
blind”.

But near the continuum we should see the correct behaviour.

Improved staggered actions are being used today in large-scale
dynamical simulations.

It is therefore important to understand to what extent staggered quarks
show the correct topological properties.

Use the improved staggered formulations to address these questions:
Can we see the continuum features in lattices with reasonable
parameters?
Are (improved) staggered quarks sensitive to topology?
Can we reproduce the detailed predictions of RMT?
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Staggered Dirac Operators

S =
x,y

χ̄(x) (D(x, y) + m) χ(y)

One-link (naive, KS) staggered Dirac operator

D(x, y) =
1

2u0 µ

αµ(x) Uµ(x)δx+µ,y − U
†
µ(y)δx,y+µ

= De,o(x, y) + Do,e(x, y)

αµ(x) = (−1) νµ
xν
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Staggered Dirac Operators

Antihermitian

D† = −D =⇒ −D† D ≥ 0 , hermitian

“γ5” anticommutation

{D, ε} = 0 , with ε(x) = (−1) ν
xν

sp(D) = {±iλ, λ ∈ Re }

Describes 4 “tastes” (in 4D).
Unphysical taste-changing interactions, involving at leading order the
exchange of a gluon of momentum q ≈ π/a.

Such interactions are perturbative for typical values of the lattice
spacing, and can be corrected systematically a la Symanzik.
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Improved Staggered Actions

Smear the gauge field to remove coupling between quarks and gluons
with momentum π/a.
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Improved Staggered Actions

FAT7(TAD)

+ + + =

c1 (Fat link)c5 c7c3
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Improved Staggered Actions

ASQ(TAD)

+ + + + =

=

(Naik)

c5’c1 (Fat link)

c3’

c5 c7c3

(S. Naik, the MILC collaboration, P. Lepage.)
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Improved Staggered Actions

HYP (Hypercubic Blocking)

Three levels of (restricted) APE smearing with projection onto SU(3) at each
level.
Each fat link includes contributions only from thin links belonging to
hypercubes attached to the original link.

a) b)

(A. Hasenfratz, F. Knechtli.)

Fermilab, June 2004 – p.7/15



Improved Staggered Actions

HISQ (Highly Improved Staggered Quarks)

Two levels of smearing: first a FAT7 smearing on the original links, followed by
a projection onto SU(3), then ASQ on these links.

FAT7‖SU(3) ⊗ ASQ

(E.F., Q. Mason, C. Davies, K. Hornbostel, P. Lepage, H. Trottier.)
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Improved Staggered Actions

ASQTAD and HISQ improvement removes a2 errors at tree level.

HYP and HISQ show very small taste-changing effects.

Fermilab, June 2004 – p.7/15



Index Theorem (Continuum)

For QCD in the continuum, the topological charge is given by

Q =
1

32π2
d
4
x εµνστ trFµν(x)Fστ (x)

Atiyah-Singer Index theorem:

Q =
m

nf
tr(γ5SF ) =

m2

nf n

〈n|γ5|n〉

λ2 + m2
= n

+ − n
−

where |n〉 are the eigenfunctions of the Dirac operator in the given gauge
field background, and n+, n− are the number of positive and negative
chirality zero modes

γ5|n〉 = ±|n〉
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Index Theorem (Lattice)

Dirac operators which satisfy the Ginsparg-Wilson relation

{γ5,D} = a D γ5 D

can have exact, chiral zero-modes, which can then be used to define a
topological charge via the identity

Q = a
4

x

q(x) = n
+ − n

−

q(x) = −
1

2
a tr {γ5 D(x, x)}

where q(x) is a local, gauge invariant function of the gauge fields.

For the fixed point Dirac operator, furthermore,

Q
FP = n

+ − n
−

where QFP is the fixed point topological charge.

(P. Hasenfratz, V. Laliena, F. Niedermayer.)
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Index Theorem (Lattice)

The staggered Dirac operator has no exact zero modes, therefore we
cannot expect an exact index theorem.
But close to the continuum limit, we expect to see a similar behaviour:
the first few eigenmodes of high chirality, in the number required by the
continuum index theorem, and the rest of the eigenmodes with small
chirality.

It has been seen that if you smooth the configurations enough, for
example by repeatedly smearing, eventually the continuum features
appear. ( P. Damgaard, U. Heller, R. Niclasen, K. Rummukainen.)

That is also the case, if we study lattice discretizations of continuum
instantons. (J. Smit, J. Vink.)

But, we want to study the features of the raw, non-smoothed
configurations.

Chirality must be measured using a taste-singlet operator, which is the
one that couples to the anomaly.
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(Almost) Index Theorem for Improved Staggered Quarks
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Calculate Qgl (cooling method).
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(Almost) Index Theorem for Improved Staggered Quarks

Calculate Qgl (cooling method).

Calculate the chirality of the low-lying eigenmodes, with the taste-singlet
“γ5”, gauge-invariant staggered operator (a 4-link operator)

�

n = 〈n|γ5|n〉

Are there:
nt n+ near-zero modes with chirality � ≈ 1

and/or nt n− near-zero modes with chirality � ≈ −1

such that Qgl ≈
1

nt

�

n
+ − n

−

�

?
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(Almost) Index Theorem for Improved Staggered Quarks

Unimproved glue, Qgl = 2, a ≈ .1 fm , 163 32
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(Almost) Index Theorem for Improved Staggered Quarks

Improved glue, Qgl = 2, a ≈ .09 fm , 164
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(Almost) Index Theorem for Improved Staggered Quarks

Scatter plot: chirality vs eigenvalue.
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Spectrum Degeneracy

We expect to see a degeneracy of nt near the continuum limit.

Tree level improved glue, a ≈ 0.09 fm
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RMT and Staggered Quarks

RMT predicts, for each sector of fixed topological charge Q, the
probability distribution of the non-zero low lying eigenvalues of the Dirac
operator up to a constant.

In past studies, the results obtained for staggered quarks in any sector of
topological charge Q were identical to the one predicted for the sector
Q = 0, really topologically blind!
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Eigenvalue Averages

Ordering the non-zero eigenvalues {±iλ} as

0 < λ1 ≤ λ2 ≤ · · ·

the ratios of the average of each eigenvalue at fixed Q

〈λj〉Q
〈λk〉Q

can be calculated from RMT, for different values of Q, j and k, and
compared with the results of numerical simulations.
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Eigenvalue Averages

We calculate Qglue by cooling, using two different cooling actions and an
improved gluonic topological charge operator. We throw away
configurations whose charge is unstable under cooling or does not agree
between the two actions (10% of the total.)
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We calculate Qglue by cooling, using two different cooling actions and an
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between the two actions (10% of the total.)

We calculate the low-lying spectrum of the staggered Dirac operator on
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0 < λ1 ≤ λ2 ≤ · · ·

For each configuration with topological charge Q, we throw away the first
2Q eigenvalues. Then we group the remaining eigenvalues, in ascending
order, in quartets. We calculate the average for each quartet j, Λj .

We calculate the ensemble average of Λj , at fixed topological charge, and
compare the corresponding ratios with the predictions of RMT.

〈Λj〉Q
〈Λk〉Q
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Eigenvalue Averages
Tree level improved glue, a = 0.093 fm 164 lattice, L = 1.488 fm
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Eigenvalue Averages
Tree level improved glue, a = 0.093 fm 124 lattice, L = 1.116 fm
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Eigenvalue Averages
Tree level improved glue, 124 a = .125 fm and 164 a = .093 , approx same L.
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Conclusions and Outlook

Staggered quarks at values of the lattice spacing being used in current
simulations are sensitive to topology.

For improved staggered operators there is a sharp distinction between
high and low chirality modes, and their respective number is in
accordance with the Index Theorem.

The predictions of RMT for the low-lying spectrum are not reproduced
exactly for the lattices we have studied, but the results are quite close to
the theoretical values, for each sector of Q.

The spectrum degeneracy can be seen directly in some lattices, and can
be also inferred from the comparison with RMT.
This is a necessary condition to obtain a correct one-taste theory by
taking the fourth root of the determinant.

Study bigger lattice volume, to ascertain the influence of finite-size effects.
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