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The real world ...

What limits real cavities?
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Thermal breakdown

Field Emission

Success 
Story

2

Gradients have been 
improving steadily 
due to understanding 
of limiting 
phenomena and 
invention of 
effective cures

Multipacting

Thermal breakdown
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Electric field high at iris

3

Magnetic field high 
at equator
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• MP is due to an exponential increase of electrons under 
certain resonance conditions

Multipacting
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Multipacting in Nearly Pill-Box Shaped 

Cavities

5

Early SRF cavity 
geometries frequently 
limited by multipacting, 
usually
at < 10 MV/m
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Multipacting as Seen in Q vs E curve
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Multipacting in Nearly Pill-Box Shaped 

Cavities

Thermometers show heating in barriers
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Multipacting

• MP is due to an exponential increase of electrons 
under certain resonance conditions
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Low FieldHigh Field
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Multipacting

Cyclotron frequency

Resonance condition: 

Cavity frequency (ωg) = n x cyclotron frequency
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� Possible MP barriers given by
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Multipacting, Secondary Emission Coefficient

• Not all potential barriers are active because 
electron multiplication has to exceed unity.
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MP only active for these impact energies
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Multipacting Solution

• In cavities, solved 
multipacting by 
adopting a spherical, 
(elliptical) shape.
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(elliptical) shape.

Electrons drift to equator
Electric field at equator is ≈ 0
�MP electrons don’t gain energy
�MP stops350-MHz LEP-II cavity (CERN)
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Two Point Multipacting
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H. PadamseeTwo Side Multipacting Simulation
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H. PadamseeStudy Field Limitations Using Thermometry 
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Temperature Map Movie for Two Point 
Multipacting Resulting in Thermal 

Breakdown
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Breakdown



H. PadamseeThermal Breakdown From Defects
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Thermal Breakdown

• Very strong heating 
observed over extended 
areas.

• Often centered on a 
hotspot.

21

1 4log(∆T [mK])

Field cannot be increased!
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Temperature Map Movie of Defect 
Induced Quench

22



H. Padamsee

23

Cu
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Theory of thermal breakdown
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• TB is a premature quench of the superconducting state.

• A normal conducting spot triggers quench when it heats the Nb above Tc.

Breakdown field given by
(very approximately):

Htb =
4κ T (Tc − Tb )

rd Rd

κT: Thermal conductivity of Nb
Rd: Defect surface resistance
Tc: Critical temperature of Nb
Tb: Bath temperature
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Cu No foreign materials found

Typical Defects
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Cu

0.1 – 1 mm size defects cause TB

Surface defects, holes can also 
cause TB



H. Padamsee

Avoiding Thermal Breakdown

A. Avoid the defects (easier said than done!)
• High quality Nb (e.g., rollers during production run 

must be very clean to avoid embedding inclusions)

• Good cavity production techniques (deep drawing, 
spinning, welding …)
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spinning, welding …)

• Clean assembly of all cavity vacuum equipment

B. Tolerate unavoidable defects but “neutralize” 
them by thermally stabilizing them � improve 
the thermal conductivity of Nb.

Htb =
4κ T (Tc − Tb )

rd Rd

Htb if  κT
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Avoiding Defects

Eddy Current 
Scanning Device
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H. PadamseeEddy Currents to Check the Niobium 

30



H. Padamsee

Large inclusions as well as bad spots on the niobium surface can 
be found, also non harmful signatures such as rolling lines.
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Repair Defect By Grinding
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Thermal Conductivity and RRR
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H. PadamseeHow Impurities Influence RRR
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H. PadamseeCompare Nb and Cu Thermal Conductivity
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Niobium Purification

• Currently industry 

• Can produce high Nb 
purity by e-beam melting 
in a vacuum furnace
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• Currently industry 
produces RRR 300-400 
Nb.

• Reactor grade Nb is RRR 
= 40

• Theoretical limit is RRR = 
32,000.

RRR: Residual resistance ratio = resistivity at room temperature divided by the resistivity at 4.2 K 
(in the normal conducting state!). κT scales ≈ linearly with RRR. 
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Post Purifying Niobium

• After cavity or half-cell is 
produced

• Heat in vacuum furnace to ~ 
1400 C

• Evaporate Ti on cavity 
surface

40

surface

• Use titanium as getter to 
capture impurities

• Later etch away the titanium

• Doubles the purity (RRR ~ 
600 if originally RRR = 300)
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Post Purifying Niobium
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