
Why the Top Quark?

• Did it have to be there?

• Did it have to be heavy?

• Why is is important?

• What is its role?

Top Turns Ten (October 21, 2005) Paul Langacker (FNAL/Penn)



A Model of Leptons (1967)

• Group SU(2)×U(1); gauge bosons (W±,W 0), B

• Gauge couplings g, g′: tan θW ≡ g′/g; e = g sin θW(
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Extension to Quarks: Flavor Changing Neutral Currents

• Cabibbo mixing of dL − sL needed by charged current(
u

d′ ≡ d cos θc + s sin θc

)
L

s′
L = −dL sin θc + sL cos θc

uR dR sR

• Flavor changing neutral current transitions predicted, not observed

Jµ
Z = ūLγ

µuL − d̄′
Lγ

µd′
L − 2sin2 θW Jµ
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The Charm Quark

• GIM (1970): Introduce fourth (c) quark

– Quarks and leptons treated symmetrically (up to νR)

– dL and sL both in doublets → no tree-level FCNC

– FCNC loops calculable: mKL
−mKS

→ mc ∼ few GeV

– No triangle anomalies

– But, strong resistance to introducing new particle (cf. Pauli)
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The J/ψ

• J/ψ (cc̄) discovered 1974 at Brookhaven and SLAC
(mc ∼ 1.5 GeV)

• Role of hadron, e+e−, precision, theory

Top Turns Ten (October 21, 2005) Paul Langacker (FNAL/Penn)



The Third Generation

τ lepton, SLAC (1975)
(mτ ∼ 1.8 GeV)

Υ(bb̄), Fermilab (1976)
(mb ∼ 5 GeV)
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Sequential or Alternative?

• Simplest interpretation: sequential family(
ντ

τ−

)
L

(
t
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R tR bR

– This is the obvious generalization

– Anomaly cancellation preserved

– Allows CP violation
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PiTP 2003 (July 7, 2003) Paul Langacker (Penn)
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Other Possibilities

• However, third family could be different (e.g., string constructions)

• Many other ways to cancel anomalies

– Mirror family: τ−
L tL bL
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L bL τ−
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– Other, more complicated, possibilities
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The ντ

• Weak interactions of τ (lifetime, decay distribution, Aτ
F B, absence of

FCNC τ→l1l2l̄2) established sequential

(
ντ

τ−

)
L

τR

• DONUT experiment (Fermilab, 2000) observed ντ directly
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The Weak Interactions of the b

• e+e−→b b̄ (full strength interaction)

– Jade (DESY, 1988): Ab
F B(35 GeV) → tb3L−tb3R = −0.54±0.15

(sequental: −1
2; mirror: +1

2; singlet or doublet vector: 0)

– LEP (1992): Γb/Γhad and Ab
F B(MZ); LEP + SLC (2005)
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• CLEO (1987): absence of FCNC B→l+l−X (but reduced strength)
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Top Loops

• Quadratic GFm
2
t dependence in gauge self-energies breaks SU(2)

(MW,Z, widths, NC/CC)
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PiTP 2003 (July 7, 2003) Paul Langacker (Penn)

• Also Z→bb̄ vertex
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Precision Constraints on mt

• Theory, 1977

• 1980 global analysis: mL <
500 GeV (→mt < 290 GeV)

• 1987: mt < (175, 180, 200)
GeV at 90% cl (for MH =
(10, 100, 1000) GeV)

• 1989: Precise MZ (SLD) and
MW,Z (CDF): mt = 140+43

−52
GeV for MH = 100 (→128

(165) for MH = 10(1000) GeV)
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The LEP, SLD Era, and the Tevatron
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• Two loop mt −MH and mt − αs effects
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A House of Cards?

• Possible weak links in indirect precision predictions

– Global analysis; unexpected systematics/correlations

– Gauge principle, group, representations
(well tested by W, Z; fermion couplings)

– Renormalization of spontaneously broken non-abelian gauge
theories, including anomalies and mixed QCD-electroweak
(µ, β decay)

– A heavy Higgs (but Z→bb̄)

– New SU(2)-breaking physics to compensate mt

(Z − Z′ mixing, Higgs triplets)

– Physics beyond the standard model affecting observables
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The Discovery by CDF and D 60

• The lynchpin of the standard theory!

Top Turns Ten (October 21, 2005) Paul Langacker (FNAL/Penn)



Why is the t Important?

• Established standard theory at loop level

• Signal and background for new physics

• Top properties, decays as probe of new physics

• Higgs machine (gg fusion, tt̄H, etc.)

• Critical parameter (unitarity triangle, Higgs expectation in MSSM, precision

constraint on Higgs mass)
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The Standard Model (or decoupled MSSM) Higgs
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Figure 10.2: One-standard-deviation (39.35%) uncertainties in
MH as a function of mt for various inputs, and the 90% CL
region (∆χ2 = 4.605) allowed by all data. αs(MZ) = 0.120 is
assumed except for the fits including the Z-lineshape data. The
95% direct lower limit from LEP 2 is also shown.

for the simplest theories based on the minimal supersymmetric
extension of the SM, where the first (second) uncertainty is from the
inputs (thresholds). This is slightly larger, but consistent with the
experimental αs(MZ) = 0.1216± 0.0017 from the Z-lineshape and the
τ lifetime, as well as with other determinations. Non-supersymmetric
unified theories predict the low value αs(MZ) = 0.073± 0.001± 0.001.
See also the note on “Low-Energy Supersymmetry” in the Particle
Listings.

One can also determine the radiative correction parameters ∆r:
from the global fit one obtains ∆r = 0.0355 ± 0.0010 and ∆r̂W =
0.06959±0.00029. MW measurements [178–180] (when combined with
MZ) are equivalent to measurements of ∆r = 0.0335 ± 0.0020, which
is 1.2 σ below the result from all indirect data, ∆r = 0.0362± 0.0012.
Fig. 10.2 shows the 1 σ contours in the MW −mt plane from the direct
and indirect determinations, as well as the combined 90% CL region.
The indirect determination uses MZ from LEP 1 as input, which is
defined assuming an s dependent decay width. MW then corresponds
to the s dependent width definition, as well, and can be directly
compared with the results from the Tevatron and LEP 2 which have
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Figure 2: Required top mass precision for the interpretation of the electroweak precision data (left) and for the MSSM
Higgs system (right).
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Figure 1: Top pair cross section using the NNLL pole mass
for different values of the top velocity parameter[6].

only one Higgs exists it can be the Standard Model, a little
Higgs model or the Higgs can be mixed with a Radion from
extra dimensions. If two Higgs doublets exist it can be a
general two Higgs doublet model or the MSSM. However
the Higgs structure may be even more complicated like in
the NMSSM with an additional Higgs singlet or the top
quark can play a special role as in little Higgs or top-colour
models. In all cases there maybe only one Higgs visible at
LHC that looks Standard-Model like, but the precision at
ILC can distinguish between the models.
The Higgs can be identified independent from its decay

mode using the µ+µ− recoil mass in the process e+e− →
HZ with Z → µ+µ− (see fig. 3)[10]. The cross section of
this process is a direct measurement of the HZZ coupling
and it gives a bias free normalisation for the Higgs branch-
ing ratio measurements. Together with the coss section of
the WW fusion channel (e+e− → ννH) this allows for a

model independent determination of the Higgs width and
its couplings to W, Z, b-quarks, τ -leptons, c-quarks and
gluons on the 1 − 5% level[11].

s=350GeV
L=500fb−1

µµ−recoil mass [GeV]

Figure 3: Measurement of e+e− → HZ from the µ+µ−

recoil mass.

At higher energies the t̄tH Yukawa coupling can be
measured from the process e+e− → t̄tH where the Higgs
is radiated off a t-quark. At low Higgs masses, using
H → bb̄, a precision around 5% can be reached. For
higher Higgs masses, using H → WW , 10% accuracy
will be possible (see fig. 4)[12].
If the Higgs is not too heavy the triple Higgs self-

coupling can be measured to around 10% using the double-

Future
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Expectation in MSSM
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• Bound weakened in extensions of MSSM
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What is the Role of Top?

• CP violation allowed in CKM matrix

• The top may be the only normal fermion

• The third family may be different (e.g., strings, top-color)

• May drive electroweak symmetry breaking (e.g., radiative breaking in

MSSM, top-color)
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Radiative Electroweak Symmetry Breaking

• m2
H > 0 at Planck scale driven negative by large top Yukawa

t
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H H

PiTP 2003 (July 7, 2003) Paul Langacker (Penn)
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Conclusions

• Discovery was splendid achievement (experiments and accelerator)

• Critical for establishment of standard theory at quantum level

• Cooperation of discovery machines, precision, theory

• On to the Higgs (or alternative) and beyond
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Conclusions

• Discovery was splendid achievement (experiments and accelerator)

• Critical for establishment of standard theory at quantum level

• Cooperation of discovery machines, precision, theory

• On to the Higgs (or alternative) and beyond

Congratulations!
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