I Advanced track reconstruction
| algorithms



Kalman filter limitations

* The Kalman filter is an optimal estimator of
track parameters for a purely Gaussian
problem

e Reality is non-Gaussian, and the Kalman

filter cannot take that into account
- in reality it is not an optimal estimator

* The classical Kalman filter suffers from lack
of robustness in the presence of noise
(RecHits not from the track)




I GSF

to address the problem of non-Gaussian

measurements and material effects.

- It Is Impossible to treat in a computationally
efficient way arbitrary probability density
functions

- but arbitrary functions can be approximated as
sums of Gaussians

- since the Kalman filter is linear the fit of a sum of
Gaussians is a sum of Kalman filters

I * The Gaussian Sum Filter was implemented



Electron energy loss

Observed distribution for full track and estimate from Bethe-Heitler using % da; /zg
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Fractional energy loss distribution

Observed distribution for single layer with KF (blue) and GSF (red) estimate.
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Results at p, =10 GeV

(Q/P residuals tor full simulation:

KF (black) vs. GSF (blue) with different number of components

gsf pred, residuals QP, layer Tip gsfPredQPRes
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(Q/P residuals for full simulation with vertex constraint:

KF (black) vs. GSF (blue) with different number of components

Results at p; = 10 GeV

gsf updated, residuals QP, layer Tip
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I GSF performance for electrons

resolution for the core part of the residual
distribution

* The tails are not reduced
- as a consequence the RMS is not reduced either

 The GSF is most effective for low energy
electrons (a few tens of GeV), almost no gain
for 100 GeV Pt.

I  The GSF gives significant improvement of
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Some events at p; =

y at transverse impact parameter plane: KF (blue), GSF (red) and simulated value (black)
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0.09
0.08
0.07
0.06
0.05
0.04
0.03

0.02

LY
bJ

..I...I...I.JL&I-..I...I...I

-0.18 -0.16¢ -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 O

0.01

0

z = 26% (first event < 30%)




I Individual track PDF

density function for each track (a sum of a

configurable number of Gaussians)
- A single gaussian approximation to this PDF
loses a lot of information

* Wherever the track is used, the pdf should be
used explicitly (in impact parameter

probability, kinematic fit,...)
- already used in vertex fit

I  The GSF gives a complete 5D probability



I GSF status
e Currently the GSF is extensively validated for
electrons, with multi-Gaussian energy loss
I * The GSF treatment of multiple scattering is

implemented, but the results are not very
encouraging
* GSF treatment of multi-Gaussian RecHits is

planned

- may “solve” the problem of non-gaussian pixel
RecHit residuals

- track by track pdf should be better than global

calibration of IP probability
* and does not require channel-specific calibration



I DAF

I  The track reconstruction in dense

environment is degraded by

- increasing probability to assign wrong hits to the
track

- RecHit degradation due to contamination by
other tracks or noise

* The Deterministic Annealing Filter was
implemented to assign the hits to a track in

an optimal way
- soft assignment iterative method



Motivation: What is the DAF?

O\,

KF: DAF:

- hard hit-track assignment - soft hit-track assignment

(1 or 0) (1...0, "assignment probability”)

— explicit pattern recognition - explicit + implicit pattern recognition
(combinatorics) (combinatorics + annealing)

What do we expect‘? better hit-to-track assignment -> better track parameters



DAF performance

* For isolated tracks, even at high luminosity,
the DAF does not provide a measurable
improvement in track quality

* To see an effect one has to go to dense
environments, e.g. core of a 200 GeV jet or
3-prong high Pt tau



Tracks in b—jets: example
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Difficult environment: high-pt tracks in high-Et b-jets (dense track
environment)




b-jets: impact parameters

Selection:

bbar Eft: 200 GeV

letal: 0-0.7, 1.2-1.6,
1.6-2.0, 2.0-2.4

RecTracks: pt=> 15 GeVi/c

DAF has better ip
resolutions and pulls
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b-jets: track y? probability

Selection:

bbar Ef;
etal:
RecTracks:

200 GeV
0=0.7 _
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Old study: DAF was mature, but vertexing not
should be repeated

b—jets: SV finding efficiency
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I DAF efficiency

 The DAF needs an initial hit collection, which
I should contain ideally only one track, to
operate
* Currently the hit collection is done around a
Kalman filter track

- the DAF efficiency is equal, but cannot be better,
than the KF efficiency

* Better ways to seed the DAF are needed, but
this Is a serious project (Ph.D. student
needed)




I DAF status

DAF has been maintained “as is”
— just ported to each new version of ORCA
- not yet a RecAlgorithm
* The DAF package should be significantly

cleaned up

- to make use of new functionality, like grouped
measurements

- to extract the MultiRecHlits for use by other
algorithms (GSF)

- for RecAlgorithm

I o After Matthias Winkler finished his thesis the



I Other algorithms

* We are in a sad situation
— All advanced algorithms we thought about are

I already implemented
* the multi-track filter is super — but we don't have the

track densities to need it, even in 500 GeV 3-prong

tau
- CMS is the only collaboration AFAIK with a GSF and a

DAF implementation (but our friend Are Strandlie is now

in Atlas...)
— A possible bright spot is the idea of Christian to
reconstruct secondary interactions to validate short

tracks
* seemed impossible at LHC, but now it may be doable

* only way to improve efficiency for early interacting
tracks



I Summary

default where appropriate, and use them for

physics reconstruction
- they are much slower, should only be used
where they give a real advantage

I * We need to make the advanced algorithms



